Оценить:
 Рейтинг: 0

Динамическая Вселенная

Жанр
Год написания книги
2024
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

Иными словами, в этих сгущениях можно предполагать значительное количество электронов высокой энергии. Вскоре стало понятно, что источники радиоизлучения расположены по всему объему самой галактики. Возможны два предположения:

1. Релятивистские электроны были непосредственно выброшены из ядра галактики.

2. Из ядра выброшены объекты, которые являются источниками релятивистских электронов столь высокой энергии, что их синхротронное излучение сосредоточено в оптической области.

Ограничиться первой гипотезой невозможно, поскольку в этом случае нельзя будет понять сосредоточение оптического излучения в малом объеме сгущений. Поэтому надо думать, что источники, испускающие электроны высокой энергии сосредоточены в самих этих сгущениях. Таким образом, Амбарцумян еще в 1950-х годах приходит к пониманию природы рассматриваемых сгущений на джете. Они являются конгломератами облаков релятивистских электронов газовых облаков и нестационарных звезд. Причем, нужно заметить, что выброшенная из ядра материя в короткий срок превращалась в подобные конгломераты. Эмиссионная линия, наблюдаемая в области ядра М87, дает, по-видимому, представление о скорости выбросов из ядра. Амбарцумян оценивает порядок сроков, в течение которых могут происходить подобные превращения. Они оказываются порядка 3?10

 лет. Отсюда Амбарцумян делает важный вывод: наряду с делением ядер галактик в природе могут происходить процессы выбросов из ядер галактик относительно небольших масс. Эти выброшенные массы могут в короткие сроки превращаться в конгломераты, состоящие из молодых нестационарных звезд, межзвездного газа и облаков частиц высокой энергии.

Галактика М87 с отчетливым выбросом из ядра и, особенно со сгущениями на джете, представляла блестящую демонстрацию нестабильности и активности ее ядра. Возможность выброса масс из ядер, предсказанная Амбарцумяном, удивительным образом подтвердилась спустя 50 лет: на космическом телескопе Хаббл в 2002—2006 годах был зарегистрирован колоссальный взрыв сгущения, ближайшего к ядру галактики М87. За шесть лет светимость на этом сгущении возросла в 90 раз! К сожалению, Амбарцумяна уже не было в живых, и он не смог обрадоваться воплощению своего предвидения [67].

Приведенные наблюдательные факты (Арп, Амбарцумян) подтверждают: из ядер (центров) галактик и собственно квазаров происходит выброс мощных, коллимированных джетов: например, рис.8 «Взрыв на джете галактики М87». Здесь можно усмотреть относительно «неподвижное» сгущение, которое увеличилось в размере и светимости в 90 раз за 6 лет! Причем очевидна связь динамичного развития сгущения с распространением строго коллимированного джета. Усматривается также (на фото М87) импульсный, прерывистый характер выбросов – джетов.

Ясно, что сгущения – взрывы на джете обязаны своим происхождением свойствам самого джета. Невозможно представить строго коллимированный (не расплывающийся) джет состоящим из сжатого вещества в любой форме: пыль, газ, плазма. Упомянутыми свойствами, включая образование сгущений – «конгломератов облаков релятивистских электронов, газовых облаков и нестационарных звезд» может обладать только джет в полевой форме. На эту роль может претендовать гамма-джет, состоящий из коллимированных, когерентных гамма-лучей. Цилиндрическая поверхность гамма-джета, обладающая экстремальной напряженностью электрического поля, создает на границе с физическим вакуумом вещество, начиная с нейтронов, которые распадаются (через 15 минут) на протон, электрон и антинейтрино. Рождению ЭЧ – элементарных частиц сопутствует образование сплошного спектра ЭМ излучения широкого диапазона, включая оптическое (что-то похожее на сплошной спектр «тормозного излучения»). Зона сплошного спектра перемещается с джетом со скоростью света. Облака релятивистских электронов «выдают» синхротронное излучение при криволинейном движении вокруг «силовых линий» магнитного поля как по ходу движения (джета), назад и в других направлениях (почти подобно полоидальному вращению вокруг вихревого кольца) (Рис.9).

Рис.9. Мощные выбросы из ядра радиогалактики в Лебеде А

Все эти факты ставят под сомнение, что виновниками данных процессов являются чёрные дыры, находящиеся в ядрах этих космических объектов. Исходя из современной теории образования и развития чёрных дыр, они на такое не способны. Необходимо искать другое объяснение этим явлениям, иные источники возникновения джетов.

3 Красное смещение

Какие ещё проблемы стоят перед нами, если мы будем пытаться объяснять наблюдаемые в космическом пространстве явления с точки зрения объяснения красного смещения эффектом Доплера и расширением пространства?

Доказательствами «Большого взрыва» стало обнаруженное американским астрономом Весто Слайфером в 1912 – 1914 годах красное смещение для галактик. В 1929 году Эдвин Хаббл открыл, что красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла) и объяснил это эффектом Доплера. Однако, в последствии выяснилось, что в наблюдаемое красное смещение от галактик вносит вклад как космологическое красное смещение из-за расширения пространства Вселенной, так и красное или фиолетовое смещения эффекта Доплера вследствие собственного движения галактик. При этом на больших расстояниях вклад космологического красного смещения становится преобладающим [12]. Таким образом, на самом деле, основной вклад в красное смещение вносит не эффект Доплера удаляющихся галактик, а расширение самого пространства, причём, это расширение идёт с увеличивающейся скоростью, в зависимости от расстояния до космического объекта – чем он дальше, тем с большей скоростью от нас удаляется. В начале 1970-х годов для постоянной Хаббла было принято значение H = 53,5 (км/с) /Mпк. Наиболее надёжная оценка постоянной Хаббла на 2013 год составляла H = 67,8±0,77 (км/с) /Mпк [43]. В 2016 году эта оценка была уточнена до H = 66,93±0,62 (км/с) /Mпк [44]. Следует отметить, что измерения разными методами дают несколько различающиеся значения постоянной Хаббла. Указанные выше значения получены с помощью измерения параметров реликтового излучения на космической обсерватории Планк. Опубликованные в 2016 году измерения «местного» (в пределах до z <0,15) значения постоянной Хаббла путём вычисления расстояний до галактик, по светимости наблюдающихся в них цефеид, на космическом телескопе Хаббла дают оценку в 73,24 ± 1,74 (км/с) /Мпк, [62].

В соответствии с современными представлениями вспышки сверхновых служат одним из реперов расстояний до галактик. Вспышки сверхновых типа Ia, длятся в нашей Галактике порядка двух недель, а в более далёких галактиках растянуты во времени пропорциональному красному смещению этих галактик, которое в свою очередь пропорционально удаленности этих галактик. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1,0 длится один месяц.

Аристарх Аполлонович Белопольский, обнаружил в 1887 году асимметрию «Доплеровских» смещений наиболее ярких звезд нашей Галактики ~5 км/сек в направлении апекс – антиапекс Солнца и расхождение между «Доплеровской» и параллактической скоростями Солнца относительно окружающих звезд. Астрофизик В. В. Кэмпбелл, открыл в 1911 году K-эффект – зависимость Красных смещений от абсолютных светимостей звезд нашей Галактики. Астрофизик Р. Дж. Трамплер доказал несоответствие K-эффекта эффекту Доплера и отличие его от гравитационного красного смещения. В 1929 году, после открытия Хабблом красного смещения галактик, астрофизик Аристарх Аполлонович Белопольский заявил, что для создания красного смещения галактики не обязательно должны удаляться: изменение спектра галактик вызывает не эффект Доплера, а какое-то иное физическое явление. Астрофизик Хэлтон Арп открыл связанные космические объекты, имеющие сильно разнящиеся красные смещения.

С помощью звезд реперов, неоднократно определяли расстояние до центра Галактики R

. Однако единого мнения в этом нет. Оценки R

находятся в пределах от 6,5 по звёздам подобным RR Лиры до 10 килопарсек по цефеидам. Для построения межгалактической шкалы выбрали цефеиды. Этим методом определены расстояния до некоторых спиральных галактик, находящихся на расстояниях около 10 мегапарсек, где уже заметно системное «красное смещение» и, рассчитана постоянная Хаббла (H), – 50 км в секунду на мегапарсек, в соответствии с этим «определено время расширения вселенной в 13,8 миллиарда лет». Ясность в вопросе о том, по каким звездам реперам расстояния определены правильнее, внес проект HIPPARCOS (High Precision PARallax Collecting Satellite) в котором были определены параллаксы 118 000 звёзд в сфере вокруг Солнца радиусом примерно 500 парсек. В этой сфере оказались и цефеиды, причем расстояния до контрольных цефеид оказались гораздо меньшими, иногда не менее чем на четверть меньшими, чем считалось до этого. То есть расстояние до центра нашей Галактики не больше 6 килопарсек. И расстояния до ближайших галактик, имеющих системное «красное смещение» явно на 40% меньше принятых.

О том, что размеры нашей Галактики меньше размеров предполагавшихся ранее, на 221-ом заседании Американского астрономического сообщества, заявила Элис Дисон (Alis Deason), астроном университета Калифорнии в Санта-Круз. Элис Дисон и ее коллеги ориентировались на самые далекие звезды в гало Млечного Пути. Разброс скоростей у этих звезд и позволил рассчитать массу Млечного Пути в 500—1000 миллиардов солнечных, что вдвое меньше принятой в настоящее время. В спектральных линиях, излучаемых астрономическими объектами – квазарами, наблюдалось красное смещение, отвечающее трехкратному уменьшению частоты. С какой скоростью при этом должен был бы удаляться квазар? (Рис.10).

Рис.10. Квазар, испускающий джет из активного центра

Легко посчитать: f (A) =f (B) /3, или ? (1-v/c) / (1+v/c) =1/3, откуда 1+v/c=9 (1-v/c), или 10v/c=8. Получается, что v=0,8c. (здесь В=v/c, где c – скорость света в вакууме, v – скорость удаления объекта).

По-видимому, далекие галактики и квазары убегают от нашей Галактики со скоростями, пропорциональными расстоянию до этих объектов. Если эта линейная связь между скоростью и расстоянием справедлива для квазаров в данном примере, то расстояние до них должно быть порядка 12?10

 лет, т.е. на три порядка больше предполагаемого радиуса Вселенной [23]. Существуют и другие данные наблюдений, противоречащих утверждению, что по космологическому красному смещению можно судить о расстоянии до космических объектов. Хэлтон Арп (Halton C. Arp) – профессиональный астроном, который ранее в своей карьере, был ассистентом Эдвина Хаббла. Он был награжден призом Элен Б. Уорнер, Кливлендской Премией Ньюкомба, Премией Александра фон Гумбольдта за высокие научные достижения (Рис.11).

Рис.11. Хэлтон Арп

В течение многих лет он работал в обсерваториях Маунт-Вильсон и Паломарской. За это время он создал известный каталог «Специфические (Пекулярныые) галактики», в котором собраны деформированные или «неправильные» галактики. Арп обнаружил, беря фотографии с больших телескопов, что многие квазары, имеющие чрезвычайно высокое красное смещение z (и как думают, удаляются от нас очень быстро, и таким образом должны быть расположены на большом расстоянии от нас) физически связаны с галактиками, которые имеют низкое красное смещение и, как известно, расположены относительно рядом с нами. Арп привёл фотографии многих пар квазаров с высоким красным смещением, которые симметрично расположены с обеих сторон галактики с низким красным смещением, которая предполагается их родителем. Эти соединения происходят намного более часто, чем вероятность случайного совпадения. Подавляющее большинство астрофизиков пробует найти оправдание наблюдений Арпом связанных галактик и квазаров «иллюзиями» или «угловыми визуальными совпадениями». Но, большое количество физически связанных квазаров и галактик с низким красным смещением, которые он сфотографировал и каталогизировал, делает такое совпадение маловероятным. Это просто случается слишком часто.

Из-за фотографий Арпа, предположение, что объекты с высоким красным смещением должны быть очень далеко, на чем основана теория «Большого Взрыва» и вся «стандартная космология», теряют смысл!

Ещё один очень показательный и важный пример в опровержение тезиса «красное смещение равно расстоянию» дает следующее изображение галактики NGC 7319 (смещение = 0.0225). Маленький объект на фотографии, обозначенный стрелкой, это – квазар (смещение z = 2.11) (Рис.12). Такое наблюдение квазара с таким большим красным смещением между галактикой и Землей возможно только в том случае, если квазар был бы в более чем девяносто раз дальше галактики.

На самом деле, как показывает следующая фотография (Рис.13), на которой можно наблюдать этот же квазар в увеличенном виде, этого просто не может быть. На фотографии хорошо видно, как джет, выбрасываемый из центра галактики NGC 7319, тянется прямо к квазару. Это доказывает, что оба объекта расположены рядом, и никак не могут быть удалёнными на огромное расстояние друг от друга, тем более в 90 раз. Арп приводит такое большое количество аналогичных снимков, что от них просто так невозможно отмахнуться. Всё это требует объяснения.

Рис.12. Квазар, расположенный вблизи галактики NGC 7319

По мнению Арпа, красное смещение вызвано главным образом объектом, являющимся молодым, и только второстепенно из-за его скорости. Поэтому, как считает Арп, квазары не самые яркие, наиболее отдаленные и быстро перемещающиеся объекты в обозримом космосе, они – самые молодые объекты.

Наряду с космологическим красным смещением, предсказанное в 1948 году Георгием Гамовым, Ральфом Альфером и Робертом Германом реликтовое или фоновое излучение Вселенной, рассматривается как одно из главных подтверждений теории Большого взрыва.

Для того чтобы разобраться в описанных выше парадоксах и несоответствиях в теории основной космологической модели Вселенной, было бы неплохо попробовать предложить иные физические принципы существования красного смещения, не связанные с разбеганием галактик и эффектом Доплера, по-иному объяснить механизм фонового излучения Вселенной.

Рис.13. Более высокое разрешение Квазара (ниже) показывает «джет» вещества, простирающегося из центра NGC 7319 к нему

4 Вселенная и энтропия

Ещё одним очень важным и интересным вопросом, является наличие источника энергии, которая должна расходоваться на поддержание эволюционных процессов во Вселенной, вопреки Второму началу термодинамики, и объяснить: почему этот закон не действует в масштабах Вселенной?

Ещё со времён М. В. Ломоносова известно, что энергия, как и материя не может возникать из ниоткуда и исчезать в никуда. Этот принцип наиболее ясно изложен во Втором начале термодинамики. Название «Второе начало термодинамики» и исторически первая его формулировка принадлежат Рудольфу Клаузиусу, который сформулировал его в 1850 году: «Невозможен процесс, единственным результатом которого является получение системой теплоты от одного тела и передача её другому телу, имеющему более высокую температуру, чем первое» («Теплота не может переходить сама собой от более холодного тела к более тёплому») [14]. В современной формулировке согласно Второму началу термодинамики, любая физическая система, не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию – к так называемому состоянию с минимумом свободной энергии, или максимумом энтропии. Это можно выразить формулой, показывающей, что для любой замкнутой изолированной системы, а мы считаем, что наша Вселенная замкнута, энтропия всегда только возрастает:

dS= dQ/T

?0

здесь dS – энтропия замкнутой системы, dQ – элементарное количество теплоты, T

 – температура.

На основании этого в 1865 году Клаузиус сделал вывод о тепловой смерти Вселенной [42] (Рис.14). Клаузиус сформулировал идею о «Тепловой смерти Вселенной» следующим образом. В космосе имеются горячие звёзды и холодное окружающее пространство, со временем звёзды должны остыть, а окружающее пространство немного нагреться, уровни энергии выровняются, не будет возможности совершить работу и наступит «Тепловая смерть Вселенной» (Рис.14). На основании Второго начала термодинамики доказана невозможность создания Вечного двигателя второго рода. То есть, для поддержания протекания или развития любого физического процесса необходим подвод энергии извне, в противном случае, возможен только постепенно затихающий процесс с диссипацией энергии в пространстве.

Иными словами, в замкнутой системе (которой, как считается, является наша Вселенная) без поступления энергии возможны местные локальные эволюционные процессы на уровне флуктуаций, в такой системе в целом могут протекать только процессы деградации. Вследствие чего, как писал Клаузиус, всё это должно привести к затуханию всех физических процессов. Но, в реальности, мы наблюдаем активные эволюционные процессы, происходящие во Вселенной, образование новых галактик и звёздных систем, развитие ряда космических объектов.

Рис.14. Тепловая смерть Вселенной

Отсюда следует вывод о не замкнутости Вселенной и об источниках энергии, которые обеспечивают возможность протекания эволюционных процессов. Попытка решить эту проблему на уровне загадочной «Тёмной энергии», на самом деле ничего не объясняет.

5 Гравитация

Много загадок преподносит нам и гравитация. Диссонансом в строении современной классической физики звучит общая теория относительности (ОТО) Эйнштейна, которая связывает гравитацию не с силовыми полями, а с искривлением пространственно-временного континуума вокруг массивных космических тел. Все попытки придать ОТО квантово-полевой характер на фоне пассивной пустоты (ньютоновского абсолютного пространства) не увенчались успехом. Эйнштейн в своей Общей теории относительности попытался объяснить природу тяготения заменив гравитационное поле на искривление пространства, фактически, подменив полевую структуру геометрической топологией. Это сразу же внесло противоречие между квантовой теорией и теорией гравитации. Проблему квантования гравитации не удалось решить до сих пор. В последнее время всё чаще предпринимаются попытки создать альтернативные теории гравитации. Например, Астрофизик Кю-Хюн Чае (Kyu-Hyun Chae) из Университета Седжонг в Сеуле проанализировал 26 500 «широких» двойных звёздных систем в пределах 650 световых лет от Земли и показал, что при слабых ускорениях звёзды движутся до 40% быстрее, чем предсказывают теории Ньютона и Эйнштейна. В таком случае поведение гравитации делает ненужными поиски тёмной материи и энергии во Вселенной. Все данные для расчётов были получены из одного из обзоров астрометрического европейского спутника «Гайя» (Gaia). В данных Gaia никто не сомневается, а проделанные корейским учёным расчёты настолько достоверны, что это буквально вышибает опору под ногами многих поколений учёных [74].

Эту информацию Kyu-Hyun Chae привёл в своей работе «Breakdown of the Newton—Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars», Published 2023 July 24 • © 2023. The Author (s). Published by the American Astronomical Society.

Проделанные южнокорейским исследователем расчёты показывают, что при ускорении менее 1 нм/с

, ускорение, с которым пары двойных звёзд реально вращаются вокруг общего центра масс, перестаёт удовлетворять расчётам, сделанным на основе уравнений Ньютона/Эйнштейна. Эти выводы получены для 20 тыс. двойных звёздных систем (Рис.15). Вероятность ошибок исключается, а достоверность данных попадает в отклонение на 5 сигма – это тот результат, который необходим для заявления о научном открытии. А при ускорении менее 0,1 нм/с

, наблюдаемое в широких двойных звёздных системах ускорение превышает «классическое» значение уже на 30—40%.
<< 1 2 3 >>
На страницу:
2 из 3