Оценить:
 Рейтинг: 0

Токсичность автомобиля

Год написания книги
2019
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
eta – коэффициент полезного действия трансмиссии,
rк – динамический радиус колеса, м,

Для случая выбега при движении за счет сил инерции получаем уравнение движения со свободной силой, кото-рое в дифференциальной форме будет выглядеть как (2.9), где bврв-коэффициент учета вращающихся масс при выбеге, а функционал интегрирования в этом случае будет выглядетькак: (2.10)

При равномерной движении исходным уравнением

является тяговый или мощностной баланс (2.1).

2.3.Математическая модель автомобиля.

Данная математическая модель автомобиля построена на известных классических понятиях этой области и пред-тавляет из себя в целом аналогичную схему. Основной проблемой в этом случае является возможность анализа тягово-скорстных свойств и т. п. на базе разработанной модели с учетом принятого подхода. Поэтому можно рассматривать уже известные подходы как базовые в двух координатных сетках: одна базовая-начальная система ко-ординат, другая локальная-совмещенная с автомобилем, или точнее с его центром масс. Случай с двумя координатными сетками рассматривается достаточно редко, поэтому является новым элементом и в данном подходе может дать выигрыш в повышении точности расчетов с использованием соответствующих математических методов.

Таким образом, движение автомобиля сводится к криволинейному движению материальной точки с некоторыми степенями свободы и упрощениями, не влияющими на точность результатов. Поэтому рассматривается не общий случай криволинейного движения на базе уравнения Лагранжа второго рода, а данная система с двумя координатным сетками, причем локальная система перемещается с центром масс автомобиля строго по курсу автомобиля, т.е. существует случай курсового движения. Таким образом, движение в локальной системе координат-

плоское двумерное. Это упрощение позволяет добиться существенного выигрыша в плане математического эксперимента.

В данной модели существует несколько степеней свободы: движение вперед-назад, возвратнопоступательного типа; вверх-вниз – в пределах определенных углов наклона. Кроме того, существует возможность присоединения элементов расчета, позволяющих в той или иной степени оценить углы подьема и спуска, а также углы продольного крена, и движение «влево-вправо» самой локальной системы координат. Таким образом для данной математической модели существует 8 основных степеней

свободы, некоторые из которых имеют ограничения и упрощения. Не учитываются, например, такие факторы, как боковые крены, боковые углы рыскания, связанные в частности с уводом шин, но сама модель дает возможность в перспективе подключать соответствующие известные слож-ные методики для анализа этих случаев. В то же время в модели учитываются многие необходимые факторы с известными в теории автомобиля упрощениями: например, центр приложения силы аэродинамического сопротивления можно учитывать как фактор дорожного сопротивления, упругость шин учитывается аналогичным образом, а угол подъема определяется упрощенно и т. п.

Схема модели приведена на рис.2.1а,б. Здесь показан общий случай для движения автомобиля с произвольным ускорением на полотне дороги с определенным углом подьема. Для случая равномерного движения будет отсутствовать инерционная сила. На рис.2.16 показано расположение начальной и локальных, движущихся и связанных с автомобилем в виде материальной точки систем координат. В этой модели основные движущие, а также силы сопротивления приведены к центру масс автомобиля, представляемого как материальная точка. Кроме того, позволяет учитывать, например, жесткость подвески, а также упругость шин. Последний фактор дает представление об упругости шины как деформируемом элементе, поэтому в перспективе можно применять и более сложные модели качения. Для материальной точки в данной модели автомобиля можно также с помощью известных подходов оценивать динамическое распределение масс в виде ограничений, в некоторых случаях углы рыскания и т.п.Таким образом, связь локальных систем координат с движущейся материальной точкой может производить численный анализ на базе данной модели курсового движения с высокой точностью. При этом некоторые элементы в математической модели автомобиля можно рассматривать как известные, но вместе с тем отчасти трактовать как новые. Упругость шин, например, в данном представлении является коэффициентом сопротивления качению, который является отношением силы сопротивления качению к нормальной реакции на колесе и зависит от многих факторов. При этом можно учитывать коэффициент динамического перераспределения массы автомобиля, так как изменяется величины нормальных реакций в пятне контакта и параметры скольжения силы при передаче крутящего момента, т.е. как дополнительное упругое сопротивление или буксование. Боковые уводы также могут повлиять на точностъ расчетов, однако, в данной модели, как уже указывалось, они не учитываются, что принципал-но важно. Их можно будет учитывать в дальнейшем не-посредственно для соответствующих задач математического моделирования Поэтому первоначально рассматриваются два допущения:

– криволинейное движение с большими радиусами, которое близко приближается к прямолинейному и является курсовым движением;

– величина продольного угла наклона изменяется в необхо-димых диапазонах, характерных для случая движения автомобиля, когда тангенс угла наклона принимается непосредственно равным углу наклона, что давно известно в данной области науки.

Существует я ряд некоторых других малоизученных аспектов. Передаточная функция трансмиссии моделируется в данном случае известным образом и характеризует преобразование крутящего момента по его величине не зависимо от типа движителя и непосредственно транс-миссии. Для механической трансмиссии передаточное число общее определяется простым умножением пере-даточных чисел звеньев, а для автоматической или гидромеханической оно определяется по соотношению входного и выходного моментов, на что, в частности, влияет система управления данным механизмом.

    2.4.Элементарный тяговый расчет
    и его табличный вид.

Тяговый расчет является основным известным методом для определения тягово-скоростных и топливно-экономических свойств автомобиля. Однако, он обладает большой погрешностью, так как основан на графоаналити-ческом методе, из чего следует, что он обладает большой неточностью. Поэтому используя функционалы интегрирования удается не только увеличивать точность расчетов благодаря методу интегрирования, а не графического сложения. но и сделать этот процесс менее трудоемким, простым и быстродейсгвующим. Тяговый расчет в сжатом виде можно представить в виде таблицы 2.1—2.2,а некоторые его составные элементы представлены на рис.2.2.В самом обычном варианте этот метод удобен для расчетов:

    в том числе для электропривода

.

Кроме того, можно говорить об обобщении различных групп показателей для оценки эксплуатационных свойств автомобилей на перспективу, так как расширение их номенклатуры и возможность их сопоставимости в функции, например, скорости движения принципиально важно. Этот подход на базе сравнительного анализа продемонстрирован в таблице 2.2. Таким образом, можно даже раз-нородные показатели свести в единообразную форму и сравнивать их для различных автомобилей.

Поэтому в целом можно расширить возможности и сферу применения для тягового расчета для наземных транспортных средств. При этом можно использовать и новые методы математического моделирования.

2.5.Интегральный вид уравнения движения
и определение параметров движения.
2.5.1.Общий случай интегрирования.

    Рассмотрим случай для полиномной интерполяции мощности двигателя и часового расхода топлива.
Путь разгона определяется на основании уравнения (2.7)
как (2.11), а время разгона на основании уравнения (2.8)
как (2.12).Второй интеграл выражения (2.11) представляет собой время разгона, поэтому путь разгона также может быть выражен иначе: (2.13)
В формулах (2.11—2.13) используются следующие расчетные коэффициенты (2.14) – (2.17):
Ме – крутящий момент двигателя при максимальной мощности, нм,
VN – скорость автомобиля, соответствующая макси-
мальной мощности, м/с,
а,в,с – коэффициент полинома (2.18)
We» – удельная угловая скорость,
We – текущая угловая скорость коленвала двигателя, с-1,
WN – угловая скорость при максимальной мощности, с-1,
Vi, Vi+1 – начальная и конечная скорости разгона, м/с,
Выражение (2.12) для определения времени разгона в диапазоне от Vi до Vi+1 может быть записано также в следующем виде (2.19)
где delta – дискриминант.
При значениях характерных для случая многих двухтактных двигателей, -интеграл в уравнении (2.8) будет вида: (2.20).Как показывают расчеты выражения (2.12) и (2.20) дают абсолютно идеинтичные результаты. Данный метод интегрирования для основных показателей основан на полиномной интерполяции характеристик двигателей, что сразу дает в аналитическом виде значение решения. Значения коэффициентов полиномов приведены в таблице 2.3,а формы кривых полиномов на рис.2.3.а-в. Значения коэффициентов полиномов можно определить известными методами.

2.5.2.Случай линеаризации.

Кроме того, существует частный случай интегрального вида уравнения движения. Он получается в идеальном случае, если момент двигателя постоянен: случай линеаризации. Иногда линеаризация может оказаться более выигрышной. При этом коэффициенты в уравнении движения (2.3) будут иметь несколько иной вид, а интегральное выражение для определения величины пути можно записать как, м (2.21),а время разгона (2.22). В этом же случае можно записать развернутое уравнение выбега, полученное из уравнения (2.26).Интегрируя его аналогично (2.7) определяем путь выбега (2.27),а время выбега определяется как (2.26),

где bврв – коэффициент учет вращающихся масс при выбеге,

Vв – условная скорость выбега, м/с,

Для вариационных исчисления, т.е. в описанной в дальнейшем задаче метода конечных элементов в теории движения, можно также формулу (2.21) привести к другому виду и использовать его как один из конечных элементов для определения пути разгона: (2.30)

где Vmax – максимальная, в том числе и кинематическая скорость движения автомобиля, м/с,

Для случая определения пути выбега можно получить следующий вид конечного элемента: (2.31)

Данные уравнения могут применяться непосредственно и при вариационной формулировке задачи при правильном подборе коэффициентов полиномов.

2.5.3.Определение расхода топлива при

разгоне автомобиля.

Часовой расход топлива, как известно можно определить через удельный расход топлива:,кг\ч (2.32)

где qe=qnKобКи – удельный расход топлива, г/кВтч,

Коб- коэффициент, учитывающий зависимость удельного расхода топлива от угловой скорости коленчатого вала двигателя,

Ки – коэффициент, учитывающий зависимость удельного расхода топлива от степени использования

мощности двигателя: для разгона при полной подаче топлива можно принимать =1.

Расход топлива при этом можно определить в упрощенном случае путем интегрироваания уравнения часового расхода топлива (2.33)
Определенный интеграл в этом случае будет давать конечное аналитическое выражение в виде:,л (2.34)
где pт – плотность топлива, г/см3.
Последнее выражение может быть также записано в виде:,л (2.35)
где Nmax – максимальная мощность двигателя, кВт.

Данный случай является упрощенной идеальной моделью. Для полиномных моделей коэффициентов Коб и Ки уравнения часового расхода топлива (2.32) пропорционально произведению скорости на коэффициенты полиномов Коб, Ме, Ки, являющиеся полиномами удельной частоты вращения, следовательно зависит от 5-й степени скорости автомобиля: (2.36), (2.37).Коэффициенты полиномов для разных типов двигателей могут быть рассчитаны аналитически, их значения представлены в таблице2.3. Однако, тогда уравнение расхода топлива (2.33) при интегрировании дает значение, пропорциональное 6-й степени скорости, что приводит к усложнению непосредственно интегрирования и уменьшения точности расчетов за счет разложения интеграла в ряд и т. п. Кроме того, необходимо отметить, что реальные характеристики двигателя, например, Ме не всегда могут быть описаны полиномами второй степени точно – для этого требуются полиномы 3-5-й степени.
<< 1 2 3 4 >>
На страницу:
3 из 4

Другие электронные книги автора Юрий Медовщиков