Оценить:
 Рейтинг: 0

Глобальное потепление или глобальное похолодание?

Год написания книги
2022
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

–невозможность достаточно надежного учета положительных и отрицательных обратных климатических связей (облачно-радиационной обратной связи);

–выбросы в атмосферу большого количества метана и углекислого газа при таянии многолетней мерзлоты;

–изменений альбедо земной поверхности из-за таяния льдов или смены растительных сообществ;

–взаимодействий атмосферы и океана, соответствующей инерционности климатической системы и др.);

–отсутствие достоверных количественных оценок соотношений между вкладами природных и антропогенных факторов;

–большая пространственная неоднородность современных изменений климата и его межгодовая изменчивость;

–не изученность глобальных осцилляций приземной температуры воздуха с периодом около 65–70 лет и т.д.

1.1. Космическое влияние на климат

Интересные мысли о космическом влиянии на климат Земли, высказаны датским физиком Хенриком Свенсмарком и британским ученым Найджелом Колдером в книге «Леденящие звезды. Новая теория глобальных изменений климата», 2007 г.

«Заряженные частицы вылетают из взорвавшихся звезд, словно атомные пули, и пробивают земную атмосферу. Редкие изотопы, получающиеся в результате ядерных реакций в верхних слоях атмосферы. в реакциях с азотом, входящим в состав воздуха, образуется радиоактивный углерод, или углерод-14…», Колебания радиоактивного углерода…» свидетельствуют о переменах «…в солнечном настроении…». Проанализировав взаимодействие космических лучей с атмосферой Земли, Свенсмарк и Колдер высказали мысль, что космические лучи напрямую участвуют в преобразованиях климата и регулируют состояние облачного покрова планеты.

Изменения содержания углерода-14 в атмосфере, определяемые по кольцам деревьев за последние 400 лет, представлены на рис.1.2. Он является одним из природных радиоактивных изотопов. Углерод-14 образуется в верхних слоях тропосферы (https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%BF%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%B0) и стратосфере (https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D0%B0%D1%82%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%B0) в результате поглощения атомами азота-14 тепловых нейтронов (https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BD%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D1%8B), которые в свою очередь являются результатом взаимодействия космических лучей (https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%81%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BB%D1%83%D1%87%D0%B8) и вещества атмосферы. На рис.1.2 хорошо видны эффекты солнечной модуляции, особенно глобальных солнечных минимумов. Для сопоставления приведена нормализованная кривая числа исторических сообщений о наблюдавшихся полярных сияниях

Рис. 1.2. Изменения содержания углерода-14, % в атмосфере по кольцам деревьев за последние 400 лет

Схема космических лучей и изменение плотности облачного покрова в атмосфере Земли, представлена на рис.1.3.

Рис.1.3. Космические лучи и изменение плотности облачного покрова в атмосфере Земли.

Схема, иллюстрирующая образование радиоуглерода при воздействии космических лучей на атмосферу Земли и его захоронение в органических остатка, представлена на рис. 1.4.

Солнечный экран, мешающий солнечной инсоляции, формируется из метеоритной пыли, вулканических выбросов, которые иногда достигают высоты 70 км, пыльные бури, которые могут поднимать пыль в воздух до 7 км и дым пожаров, представлен на рис.1.5. Эти частицы в совокупности блокируют поток солнечной энергии.

Схемы, приведенные на рис 1.2-1.5, взяты из журнала “Археология и геоэкология”. Малый ледниковый период, часть 1. Космические и глобальные и метеорологические аспекты, автор К.Г. Леви.

Рис.1.4. Образование радиоуглерода при воздействии космических лучей на атмосферу Земли и его захоронение в органических остатках

Опубликованы исследования, посвящены галактическому излучению, его преобразованию и дают представление о том, что огромное количество солнечных и космических лучей летят отовсюду.

Солнце создает межпланетное магнитное поле, которое защищает все планеты солнечной системы от внешнего воздействия, но и само солнце этому воздействию подвержено. Когда эти космические лучи проникают в атмосферу, они начинают взаимодействовать с атомами атмосферных газов и распадаются на более мелкие лучи.

Рис.1.5. Структура нижней части атмосферы Земли и факторы их замутнения

Особенно интересны нейтроны, их измеряют только в двух регионах: это в обсерватории в Москве и в обсерватории в Оулу, Финляндия. Увеличение потоков нейтронов приводит к увеличению плотности облачности, а облачность играет двоякую роль. С одной стороны, эти газы ионизируются и становятся концентраторами для формирования пузырьков воды в нижнем ярусе облачности (всего их три). Самый нижний нас больше всего интересует, так как эта высота примерно 2000-2500 м, он для нас по ощущениям доходит.

Получается, что Земля, с одной стороны, охлаждается, потому что не получает должной инсоляции из-за высокой плотности облаков и, с другой стороны, одновременно получает большое количество влаги, пресной воды. Пресная вода очень плохо “дружит” с океанской водой, потому что последняя более плотная и более энергоемкая. Она нагревается и держит тепло, а пресная вода очень быстро остывает. Причем, когда говорят о глобальных потеплениях и глобальных похолоданиях, как правило, похолоданию предшествует потепление. Вот это потепление заставляет таять те ледники, которые лежат на полярных шапках и горных массивах и увеличивают сброс пресной воды в океан, слой пресной воды нарастать начинает, она остывает очень быстро и при недостатке инсоляции начинают снова формироваться ледники. Поэтому ледовый покров в Арктике и в Антарктике подвержен именно таким изменениям. А они, фактически, диктуют климат на Земле”.

1.2. Колебание интенсивности солнечного излучения

Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Без света Солнца, невозможно было бы и образование пригодных для жизни условий, и конечно, небесное светило влияет на все процессы, происходящие на живой планете. В аспекте очень долгого периода, сейчас Солнце стало ярче и дает гораздо больше тепла. Такой долгий процесс тоже влияет на Землю. Если верить исследователям, то на раннем этапе формирования жизни на Земле, Солнце было настолько неактивным, что вода находилась в состоянии льда. Даже в короткие временные отрезки можно проследить изменение активности светила. К примеру, в начале прошлого века было замечено потепление, что связано с кратковременной активностью Солнца. Влияние звезды на атмосферу Земли, полностью не изучено.

Еще один механизм влияния на климат заключается в астрономических соотношениях нашей Солнечной системы. Планеты, в основном Юпитер и Венера, находясь то на одном, то на другом расстоянии от Земли, возмущают ее орбиту. При определенном расположении Юпитер, подтягивая Землю к себе, то чуть подтягивает ее к Солнцу, то чуть отдаляет относительно основной эллиптической орбиты. Аналогично Венера всегда чуть подтягивает Землю к Солнцу, но с разной интенсивностью. Возмущая расстояние до Солнца, эти планеты возмущают примерно на 1% и радиационную энергию, попадающую на Землю. Эти возмущения имеют 12-летний период, но еще большие возмущения происходят с 60-летним периодом, который, кстати, не совпадает с так называемыми планетным резонансом с периодом 83 года.

Далее Земля крутится вокруг Солнца, но орбита не круговая, а чуть-чуть эллиптическая, в одном из фокусов находится Солнце, соответственно, расстояние от Земли до Солнца в перигее меньше, чем в апогее на 5 млн километров, т.е. мы имеем дело с колебаниями в 3,5%. А это значит, что излучение в перигее и в апогее различается примерно на 7%. В январе мы ближе на 3,5% и соответствующее полушарие получает больше тепла, чем в июле. Поэтому зима в северном полушарии в среднем теплее, а лето прохладнее, чем в южном полушарии. По оценкам средняя температура воздуха на поверхности Земли каждые полгода должна колебаться на 3-5 градусов, а на самом деле она колеблется меньше.

У каждого орбитального параметра своя цикличность. Например, эксцентриситет: траектория вращения Земли вокруг Солнца с круговой переходит на более эллиптическую каждые 95, 125 и четыреста тысяч лет. Ось вращения планеты отклоняется в пределах трех градусов от эклиптики – плоскости обращения Земли вокруг Солнца.

В эпоху плейстоцена – от 2,6 миллиона до 11,7 тысячи лет назад – Земля пережила несколько холодных периодов, когда ледники занимали до 30 процентов планеты и доходили в Северном полушарии до 40-й параллели.

1.3. Климатические циклы

По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли. Такие изменения положения орбиты предсказуемы с высокой точностью, поскольку являются результатом физического взаимодействия Земли, её спутника Луны и других планет. Самые значительные климатические процессы за последние несколько миллионов лет – это смена гляциальных (ледниковые эпохи) и интергляциальных (межледниковых) эпох текущего ледникового периода, обусловленные изменениями орбиты и оси Земли.

Результатом прецессии земной орбиты являются и менее масштабные изменения, которые названы в честь их авторов.

1. Циклы Миланковича. Согласно гипотезе сербского математика и геофизика Милутина Миланковича, сформулированной им сто лет назад в работе "Математическая теория тепловых явлений, вызванных из-за регулярных изменений параметров орбиты – эксцентриситета, наклона оси вращения и прецессии – земная поверхность нагревается Солнцем по-разному. Это так называемые циклы Миланковича, на их основе строят долгосрочные климатические прогнозы.

Ци?клы Мила?нковича —это колебания количества солнечного света (https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D1%8B%D0%B9_%D1%81%D0%B2%D0%B5%D1%82) и солнечной радиации (https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D0%B0%D1%8F_%D1%80%D0%B0%D0%B4%D0%B8%D0%B0%D1%86%D0%B8%D1%8F), достигающих Земли, на протяжении больших промежутков времени. Причиной этих отклонений от средней интенсивности солнечного излучения на Земле являются три эффекта:

1.прецессия - поворот земной оси с периодом около 25750 лет, в результате которого меняется сезонная амплитуда интенсивности солнечного потока на северном и южном полушариях Земли;

2.нутация - долгопериодические (так называемые вековые) колебания угла наклона земной оси к плоскости её орбиты с периодом около 41000 лет. Ось вращения Земли наклонена по отношению к плоскости эклиптики и этот наклон меняется от 21,5 до 24,5 и обратно.

3.долгопериодические колебания эксцентриситета орбиты Земли с периодом около 93000 лет. Форма орбиты Земли вокруг Солнца меняется со временем с меньшей на более эллиптическую и обратно. под действием притяжения других планет.

2. Минимум Маундера – явление долговременного уменьшения количества солнечных пятен. Новая модель солнечной активности, которую разработали ученые, показывает нарушение 11-летней цикличности. Она описывает особые эффекты в двух слоях Солнца, из-за которых эта звезда какое-то время не сможет обогревать нас так же, как делала это последние сотни лет. По словам экспертов, к 2030 году солнечная активность снизится на 60 процентов, что приведет к малому ледниковому периоду. Результаты исследования были представлены на собрании астрономов в Уэльсе.

По подсчетам английского астронома Эдварда Маундера в период 1645-1715 гг. (на протяжении 70 лет) наблюдалось всего около 50 солнечных пятен вместо обычных 40 000 – 50 000. Падение солнечной активности в указанный Маундером период было подтверждено анализом содержания углерода-14, а также некоторых других изотопов, например, бериллия-10 в ледниках и деревьях. Во время Маундеровского минимума наблюдалось падение интенсивности полярных сияний и скорости вращения Солнца.

Исследователи говорят, что в 26-м солнечном цикле, который приходится на период между 2020 и 2030 годами, две волны Солнца нейтрализуют друг друга. В результате их разрушительного взаимодействия произойдет значительное снижение солнечной активности (то есть на Земле станет заметно холоднее) и наступит новый Маундеровский Минимум.

Так, в Маундеровский минимум северные страны, такие как Финляндия и Швеция, потеряли примерно половину населения за счет миграции и смертей от голода и холода. Это известные факты.

На Солнце периодически пропадают пятна. Поэтому жителей Земли может ожидать цикл долгих холодных зим с рекордно низкими температурами. Сейчас Солнце вновь резко снижает свою активность. Уже несколько лет пятна на нем периодически полностью исчезают. Чем дальше, тем больше дней без пятен. Причины не совсем ясны.

3. Циклы -минимум Шпёрера– 90-летний период низкой солнечной активности, длившийся примерно с 1460 по 1550 год, который был определён и назван в честь немецкого астронома Г. Шпёрера американским исследователем Д. Эдди в статье 1976 года в журнале Science. Низкая численность солнечных пятен в указанный период была установлена путём радиоуглеродных исследований годовых древесных колец, содержание углерода в которых хорошо коррелирует с солнечной активностью.

4. Циклы – минимум Дальтона– период низкого количества солнечных пятен (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Sunspot), представляющий низкую солнечную активность (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Solar_activity), названный в честь английского метеоролога Джона Дальтона (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/John_Dalton), длившийся примерно с 1790 по 1830 год или с 1796 по 1820 год, что соответствует периоду с 4 по (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Solar_cycle_4) 7 солнечный цикл. Хотя минимум Дальтона часто сравнивают с минимумом Маундера (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Maunder_Minimum), число солнечных пятен в нем было немного выше, и сообщалось о солнечных пятнах, распределенных в обоих солнечных полушариях, в отличие от минимума Маундера. Корональные стримеры визуально подтверждены на рисунках затмения Эзры Эймса (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Ezra_Ames) и Хосе Хоакина де Феррера (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/w/index.php?title=Jos%C3%A9_Joaquin_de_Ferrer&action=edit&redlink=1) в 1806 году и указывают на сходство его магнитного поля не с минимумом Маундера, а с современными солнечными циклами.

Как минимум Маундера (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Maunder_Minimum) и минимум Шпорера, минимум (https://translated.turbopages.org/proxy_u/en-ru.ru.61053a93-632df4be-e21670d5-74722d776562/https/en.wikipedia.org/wiki/Sp%C3%B6rer_Minimum) Дальтона совпал с периодом глобальных температур ниже среднего. В течение этого периода в Германии наблюдались колебания температуры примерно на 1°C.

Важным фактором, влияющим на климат планеты, является солнечная активность, которая, по мнению ученого А. Л. Чижевского, имеет 12-летние циклы. С 1965 г. солнечная активность упала приблизительно на 30%. Предыдущий 23-й цикл (1996–2008 гг.) был очень слабым. Количество дней без пятен на солнце стало самым большим с начала ХIХ века.

В конце ХХ века резкий рост точности астрономических наблюдений позволил установить еще 11 климатических циклов, продолжительностью от 10 до 400 тысяч лет. Отдельные циклы не зависимы или мало зависимы друг от друга, поэтому могут накладываться. Суммарная амплитуда колебаний температур при этом может достигать 15 градусов. И тогда можно говорить о великих потеплениях или великих похолоданиях. Было также установлено, что количество пятен на Солнце возрастает и убывает периодически. Так родилось понятие о циклах солнечной активности. Изучение ледяного покрова Земли показало, что эпохи потепления и похолодания закономерно чередовались. За последние 450 тыс. лет было 6 климатических циклов. Мы живем в эпоху заканчивающегося межледниковья и закономерно входим в период «великого похолодания».

1.4. Влияние термохалинной циркуляции на климат Земли

Понижение глобальной температуры ведет к понижению стерического (плотностного) уровня Мирового океана, который определяется разностью в плотности океанических вод, которая зависит от разности их температуры и солености.

Термохалинная циркуляция (ТЦ) представляет собой крупно масштабную океаническую циркуляцию или конвейер, в котором происходит движение водных масс за счет перепада плотности воды, образовавшегося вследствие неоднородности распределения температуры и солёности в океане. В самом наименовании термина заложены два фактора, которые вместе определяют плотность морской воды – температура (термо) и солёность (халина). ТЦ является глобальным объединением всех существующих течений Мирового океана. Рассмотрим некоторые из них. Стоит обратить внимание на то, что вариации солнечной активности через атмосферную и гидросферную циркуляцию определяют изменение размеров ледового покрытия в полярных областях Арктики (Северный полюс) и Антарктики (Южный полюс). Именно количество атмосферных осадков и температурный режим атмосферы регулируют объемы накопления и таяния ледниковых щитов.
<< 1 2 3 4 >>
На страницу:
2 из 4