Оценить:
 Рейтинг: 0

Теория газотурбинных двигателей

Год написания книги
2017
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

В определенных условиях может наблюдаться форма неустойчивой работы, характеризуемая термином «помпаж» отличающаяся возникновением сильных низкочастотных колебаний давления и расхода воздуха во всем газовоздушном тракте.

Эта частота зависит от объема (массы) воздуха, заключенного в компрессоре и элементах тракта двигателя. Обычно она составляет несколько герц и сравнительно слабо зависит от частоты вращения компрессора.

При уменьшении расхода воздуха наиболее резко будут увеличиваться углы атаки в последних ступенях компрессора и поэтому в рассматриваемом случае критические критические углы атаки будут достигнуты, прежде всего, в последних ступенях.

Однако вследствие малого рассогласования ступеней углы атаки в остальных ступенях также будут близки к критическим. Возникновение срыва в какой-либо из последних ступеней, имеющих малую длину лопаток обычно сопровождается образованием срывной зоны значительных размеров и резким падением напора.

В результате быстрого распространения срыва на все ступени степень сжатия и расход воздуха компрессора резко и самопроизвольно падают. Одновременно может наблюдаться выброс сжатого и нагретого воздуха на вход в компрессор. При этом в характеристике компрессора наблюдается гистерезис, и для вывод компрессора из срывного режима необходимо сделать сопротивление сети значительно меньшим, чем оно было в момент возникновения срыва.

При малых значениях приведенной частоты вращения у компрессора с высокими лопатками в довольно широком диапазоне расходов воздуха может существовать вполне сформировавшийся вращающийся срыв в первых его ступенях при нормальной, устойчивой работе компрессора в целом. Необходимо, однако, иметь в виду, что наличие вращающегося срыва может стать источником возбуждения опасных вибраций лопаток. Поэтому, несмотря на отсутствие внешних признаков неустойчивости и удовлетворительные значения КПД и напора, длительная работа компрессора на таких режимах может оказаться недопустимой.

При промежуточных значениях приведенной частоты вращения, когда критические углы атаки достигаются первоначально также на первых ступенях компрессора, срыв потока, возникший в одной из первых ступеней, может быстро распространиться на весь компрессор. Этот процесс будет сопровождаться скачкообразным падением напора и расхода. Поэтому в некотором диапазоне значений приведенной частоты вращения, лежащих ниже расчетного, граница устойчивой работы может определяться возникновением срыва в первых его ступенях. Обычно этот диапазон сравнительно невелик и располагается в интервале 0,8…095 приведенной частоты вращения.

Явление неустойчивости работы компрессора в некоторых случаях может возникнуть и тогда, когда угол притекания набегающего на лопатку потока меньше расчетного. Это наблюдается при работе компрессора на так называемом режиме «запирания» компрессора (при отрицательных углах атаки, имеющих место при увеличенных, по сравнению с расчетными, расходах воздуха). Однако неустойчивость работы компрессора в этом случае проявляется гораздо реже и слабее, чем при положительных углах атаки. Это объясняется различием в величинах срывных зон. При положительных углах атаки вследствие отрыва потока от спинки и поджатия его к корытцу лопатки под действием инерционных сил зона срыва сильно развита и значительно превышает зону срыва при отрицательных углах атаки.

На характеристики устойчивости компрессора и на возникновение его помпажа большое влияние оказывает явление так называемого вращающегося срыва. Дело в том, что при уменьшении расхода воздуха, срыв потока не возникает одновременно на всех лопатках ступени компрессора. Вследствие отсутствия строгой симметрии потока по многим причинам (в том числе по причине различий в геометрии элементов проточной части компрессора и наличия возмущений потока на входе в него) срыв вначале появляется в нескольких или даже в одном месте по окружности ступени, охватывая в каждом из них по нескольку межлопаточных каналов. При этом зона из-за уменьшения пропускной способности межлопаточных каналов, в которых происходит срыв потока с лопаток, перемещается по окружности в том же направлении, что и само колесо, но с меньшей скоростью. Следовательно, место образования зоны срыва не присуще постоянно одним и тем же межлопаточным каналам.

Возникновение вращающегося срыва характеризуется появлением дополнительных пульсаций давления в компрессоре. При помпаже, как уже отмечалось, происходит периодическая низкочастотная пульсация, т. е. колебание давления и скорости потока воздуха по тракту компрессора. КПД компрессора при этом резко уменьшается. Это приводит к падению тяги и ухудшению экономичности двигателя в целом. Сопровождается помпаж характерными периодическими сильными хлопками, ростом температуры газов и резким падением частоты вращения ротора двигателя.

Более того, вызываемая помпажом компрессора пульсация потока воздуха может привести к срыву и затуханию пламени в камере сгорания и, следовательно, к выключению двигателя.

При помпаже вследствие пульсации потока воздуха возникает вибрация лопаток компрессора, которая передается всей его конструкции. При сильном помпаже возникшая вибрация компрессора передается всей конструкции двигателя, вызывая его тряску. Последняя может привести к разрушению не только компрессора, но и двигателя. Поэтому помпаж компрессора двигателя в эксплуатации недопустим.

Рабочие режимы и запасы устойчивости компрессора

Целесообразным является устройство перепуска в средней части компрессора. В этом случае открытие клапанов перепуска при пониженных значениях приведенной частоты вращения приводит к увеличению расхода воздуха через первые ступени. В результате осевые скорости воздуха в этих ступенях увеличиваются, приближаясь к расчетным.

В то же время увеличение подачи топлива для поддержания неизменной частоты вращения ротора ГТД и соответственно к увеличение температуры газов перед турбиной влечет за собой уменьшение объемного расхода воздуха через последние ступени компрессора. В результате осевые скорости воздуха в этих ступенях уменьшаются, а углы атаки увеличиваются, приближаясь к расчетным. Открытие клапанов перепуска при пониженных значениях приведенной частоты вращения приводит к увеличению запаса устойчивости компрессора, увеличению степени сжатия и повышению КПД как первых, так и последних его ступеней.

Значения степени сжатия и расхода воздуха, соответствующие какому-либо конкретному рабочему режиму, изображаются на характеристике компрессора рабочей точкой. Важное значение в теории газотурбинных двигателей имеют точки, соответствующие установившимся режимам работы двигателя, т. е. постоянным во времени значениям частоты вращения, подачи топлива и других параметров и факторов, которые могут влиять на работу элементов двигателя.

Нарушение устойчивой работы компрессора газотурбинного двигателя является одним из наиболее опасных отказов авиационной авиадвигателей. Поэтому в эксплуатации работа на режимах, где рабочая точка располагается вблизи границы устойчивости, т. е. где запас устойчивости мал, недопустима.

Для предотвращения неустойчивой работы двигателя при высоких приведенных оборотах необходимо, чтобы значение максимальных приведенных оборотов было выше, чем самое высокое значение фактических приведенных оборотов, которое может встречаться в эксплуатации.

Влияние условий эксплуатации на характеристики компрессоров

Существенное влияние на характеристики компрессора могут оказать следующие условия:

а) влажности атмосферного воздуха;

б) неравномерное поле параметров потока на входе в компрессор;

в) нестационарность потока воздуха перед или за компрессором;

г) изменение размеров и состояния поверхности лопаток.

С подъемом на высоту уменьшается давление воздуха. При значения давления, меньших критического, падает КПД и степень повышения давления, в результате чего запас устойчивости компрессора на больших высотах полета может существенно сократиться.

При отрицательных температурах наружного воздуха даже при высокой относительной влажности влагосодержание составляет менее 0,005, т. е. менее 5 г паров на 1 кг воздуха, и его влияние не ощущается. Однако в условиях полета на малой высоте в жаркий день при большой относительной влажности влагосодержание может достигать значений 0,05…0,08, и влияние влажности на работу компрессора становится заметным.

Увеличение влажности воздуха ведет прежде всего, к увеличению скорости звука во влажном воздухе и снижению чисел М, с которыми обтекаются лопатки компрессора.

Рассмотрим механизм влияния радиальной неравномерности на работу компрессора.

Если неравномерность такова, что вызывает увеличение углов атаки лопаток, где имелся большой запас по срыву потока, и, наоборот, уменьшение в тех областях, где лопатки работали (в равномерном поле) почти с критическими углами атаки, то запас устойчивости ступени в целом возрастает.

Рабочие лопатки периодически попадают в зону пониженных осевых скоростей, т. е. периодически обтекаются с повышенными углами атаки.

В некоторых случаях (например, при отклонении струи газов, выходящих из сопла, в устройствах для реверса тяги, при отражении ее от поверхности земли у самолетов вертикального взлета и посадки, при неблагоприятном ветре на режиме висения вертолета и т. п.) возможно возникновение неравномерности поля температур на входе в компрессор вследствие попадания горячих газов (или подогретых ими воздушных струй) в воздухозаборник.

Попадание горячих газов или подогретых струй воздуха на вход в компрессоре приводит не только к снижению степени сжатия компрессора, но и к резкому снижению запаса устойчивости.

Течение воздуха в компрессоре из-за относительного перемещения рабочих и неподвижных лопаток всегда является нестационарным. В дополнение к этой нестационарности, характеризуемой частотами колебаний порядка нескольких тысяч герц, в условиях эксплуатации может возникнуть нестационарность со значительно меньшими частотами, вызванная, например, периодическими колебаниями давления на входе при нарушении устойчивости течения в воздухозаборнике, нестацинарностью процесса в камере сгорания, а также носящими случайный характер пульсациями потока и крупномасштабной турбулентностью, возникающими при срывах потока в каналах воздухозаборника, при повышенной турбулентности атмосферы и т. п.

Обрыв лопаток обычно приводит к таким разрушениям элементов проточной части, в результате которых (если двигатель продолжает работать) степень сжатия и КПД компрессора резко падают, а запас устойчивости существенно снижается; во многих случаях это приводит к нарушению устойчивости работы компрессора. Незначительные повреждения (забоины) приводят к менее резкому ухудшению параметров компрессора, но при большом их количестве также могут служить причиной заметного снижения КПД и запаса устойчивости. К такому же результату приводит увеличение радиальных зазоров или сильная коррозия лопаток.

Влиянию абразивного износа лопаток особенно подвержены компрессоры вертолетных двигателей. Это происходит потому, что вертолеты в большинстве случаев базируются на грунтовых площадках, не имеющих твердого покрытия, и длительное время работают вблизи земли.

При прохождении через двигатель 100 кг пыли степень сжатия компрессора уменьшается на 8% и КПД – примерно на 3%.

Регулирование компрессоров

С целью уменьшения рассогласования ступеней многоступенчатого компрессора на нерасчетных режимах в авиационных газотурбинных двигателях применяются различные способы регулирования компрессоров:

а) повышение запасов устойчивости компрессора;

б) снижение уровня вибронапряжений в лопатках;

в) повышение КПД компрессора на нерасчетных режимах работы двигателя;

г) изменение соотношения между приведенной частотой вращения и степенью повышения давления воздуха на рабочих режимах.

К основным способами регулирования компрессоров относятся:

а) перепуск воздуха из проточной части компрессора;

б) поворот направляющих или рабочих лопаток;

в) изменение соотношения между частотой вращения ступеней компрессора.

Перепуск воздуха является одним из наиболее простых способов регулирования компрессора. Устойчивая работа компрессора обеспечивается только при приведенных оборотах больших, чем обороты нижнего срыва. При меньших значениях приведенных оборотов расход воздуха через расположенную за компрессором турбину оказывается меньшим, чем на границе устойчивой работы компрессора. Устойчивую работу двигателя в этой области можно обеспечить, перепустив часть воздуха из проточной части компрессора мимо турбины через клапаны перепуска воздуха [2], управляемые системой автоматического регулирования двигателя. Клапаны перепуска воздуха часто выполняют в виде стальной ленты, закрывающей окна в статоре компрессора.

Более целесообразным является установка клапанов перепуска воздуха в средней части компрессора. В этом случае открытие клапанов перепуска воздуха при пониженных значениях приведенной частоты вращения приводит к увеличению расхода воздуха только через первые ступени, т. е. как раз через ступени, работающие с повышенными углами атаки. В результате осевые скорости воздуха в этих ступенях увеличиваются, а углы атаки уменьшаются, приближаясь к расчетным.

Затрата дополнительной работы на сжатие воздуха, выпускаемого через клапаны перепуска воздуха, приводит к необходимости увеличения подачи топлива для поддержания неизменной частоты вращения ротора компрессора и соответственно к увеличению температуры газов перед турбиной. Это приведет к уменьшению объемного расхода воздуха через последние ступени компрессора. Осевые скорости в этих ступенях уменьшаются, а углы атаки увеличиваются, что приводит к увеличению напора последних ступеней. В результате, открытие клапанов перепуска воздуха при понижении приведенной частоты вращения ротора приведет к увеличению запаса устойчивости компрессора, увеличению степени сжатия и повышению КПД как первых, так и последних его ступеней.

Изменение углов атаки в различных ступенях компрессора достигается изменением углов установки лопаток ротора или статора при изменении режима работы двигателя.
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6