Оценить:
 Рейтинг: 0

Book-5. Troyan horse, novella

Автор
Год написания книги
2021
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Replacing the expression for the mass of points through the volume and density we get:

(V1 + V2) • Pmat • g = Kg • m1 • m2 / r ²

(V1 + V2) • Pmat • g = Kg • V1 • V2 • P ² mat / r ²

Pmat = g • r ² • (V1 • V2) / Kg • V1 • V2 (6)

where: Pmat – the density of matter

V1 – volume of the material point “m1”

V2 – the amount of material point “m2”

g- gravitational tension

Kg- gravitational constant

Of the assumptions:

LimPpr = g • r ² • (Vpr1 Vpr2 +) / KG • • Vpr1 Vpr2 (7)

where: Vpr1 – the amount of space the material point “m1”

Vpr2 – the amount of space the material point “m2”

From the above formula (7) implies that an increase in the distance between two material points in the system consisting of the material points, the density of the space in these locations is increasing.

As a consequence of the above, it follows the law of the unity of existence of matter and space, or the law of conservation of matter and space.

The quantity of matter occupies a space equal to,

The numerical value of the amount of this SPACE

Mmat = Vred (1)

To prove the law consider the phenomenon of reducing the density of the space at the time the matter in it. In this case, the decrease in the density of space “RPR” filled the space occupied by the density of matter inversely:

R ¹ = 1/Rpr

where: P ¹ – the density of the space occupied by matter

RPR- density space

Of the assumptions (2) and (4) we get:

Fvyt = P ¹ • (+ Vpr1 Vpr2) • g = Kg • m1 • m2 / r ²

(Vpr1 + Vpr2) • g / LimPpr = Kg • m1 • m2 / r ²

• Vpr1 Vpr2 = m1 • m2

The product of the numerical amount of space occupied by matter, equal to the number of the numerical product of the mass of matter in space, or:

Mmat = m1 • m2;

Vred = Vpr1 • Vpr2

From the above discussion compliance with conditions (1)

Mmat = Vred (1)

On the basis of the law of conservation of space and matter, confirmed the validity of the assumption (2): Fvyt = Ftyag

From which it follows that the space affects, in a system consisting of any two material points on these points, with the force pushing applied to these points, and equal in magnitude to the force of gravity. The direction of this force, according to Newton’s third law can be proved similarly to the proof given the well- known [4], page 47.

On the basis of the law of conservation of space and matter, confirmed the validity of the received condition that space as matter has a density.

CONCLUSIONS

1. Strength, formerly known as the force of gravity [3]. Pp. 29 is a force which pushes the two material area point “m1” and “m2”, and is equal to:

Fvyt = (+ Vpr1 Vpr2) • g / Lim • Ppr

where: Fvyt- force pushing space

Vpr1- the amount of space occupied by the material point “m1”, equal

the volume of the material point “m1”.

Vpr2- the amount of space occupied by the material point “m2”, equal to the

the volume of the material point of “m2”

LimPpr – the ultimate density of the space, which is numerically equal to the density of matter points “m1” and “m2”. g- gravitational tension

2. With increasing distance between the two material points “m1” and “m2”,

the density of the space in these locations increases and tends to a limit equal to the numerical value of the matter density of points “m1” and “m2”.

LimPpr = g • r ² • (Vpr1 Vpr2 +) /Kg••Vpr1Vpr2

where: LimPpr – density of points in space “m1” and “m2”

g – gravitational tension

r – distance between “m1” and “m2”

Vpr1- the amount of space occupied by the material point “m1”, equal
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9