Оценить:
 Рейтинг: 4.5

Контроль качества изготовления и технология ремонта композитных конструкций

Год написания книги
2015
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Метод контактного формирования (без прикатки, с прикаткой, с уплотнением)

Характеристика изделий: Крупногабаритные изделия сложной формы, оболочки, листы больших размеров

Дефекты формирования: Пористость, расслоения, разнотолщинность, неравномерное распределение связующего, участки неполного отверждения, увеличение разброса физико-механических характеристик, складки, разориентация волокон, участки с низким содержанием связующего, коробление изделия, риски на поверхности

Метод формирования эластичной диафрагмой

Характеристика изделий: Крупно- и среднегабаритные изделия сложной формы

Дефекты формирования: Неравномерное распределение связующего, разориентация волокон, расслоения, складки, участки неполного отверждения связующего, локальная пористость

Метод авто- и гидроклавного формования

Характеристика изделий: Крупно- и среднегабаритные изделия простой и сложной формы

Дефекты формирования: Расслоения, пористость, складки, разориентация армирующего материала

Метод вакуумного формования

Характеристика изделий: Среднегабаритные изделия простой и сложной формы

Дефекты формирования: Пористость, складки армирующих слоев, неравномерное распределение связующего, разориентация слоев

Метод сухой и мокрой намотки (однонаправленная)

Характеристика изделий: Крупно- и среднегабаритные изделия типа тел вращения (цилиндрические, сферические, конические, овалоидные, тороидальные оболочки), длинномерные конструкции в виде замкнутого профиля прямоугольной или другой формы

Дефекты формирования: Расслоения, пористость, неравномерное распределение связующего, утолщения в зоне нахлестов витков, участки неармированного связующего в зазорах между соседними витками, инородные включения, обрывы волокон, искривление волокон

Метод прессования тканей, пропитанных связующим, и однонаправленных препрегов

Характеристика изделий: Средне- и малогабаритные изделия простой и сложной формы

Дефекты формирования: Трещины, локальная пористость, расслоения, неравномерное распределение связующего, риски на поверхности

Микродефекты – это дефекты, размеры которых сравним с размерами армирующих элементов (элементарными волокнами) или с толщиной связующего между этими элементами. К микродефектам можно отнести дефекты, возникающие в элементарных армирующих волокнах, в прослойках, связующего между этими волокнами, а также на границе раздела волокно – матрица.

Наиболее характерными дефектами этой группы можно назвать микропоры, микротрещины, включения инородных кристаллов в структуру элементарных волокон, искривление фибрилл, разориентацию микрофибрилл и др. Микроскопические исследования дефектов армирующих элементарных волокон показали, что на поверхности стеклянных волокон имеются трещины глубиной 10

м, шириной 2 ? 10

м и длиной до 5 ? 10

м. Для борных волокон диаметром 10

м характерны поры и трещины размером до 8 ? 10

м, а также включение крупных кристаллов металлического бора в борную оболочку волокна. Трещины, встречающиеся на поверхности углеродных волокон, составляют в длину 2 ? 10

– 1 ? 10

м, а в ширину 1 ? 10

– 2 ? 10

м. Разориентация отдельных углеродных слоев (микрофибрилл) в волокнах достигается 17–23%.

В армирующих волокнах из армидных материалов размеры трещин достигают 8 ? 10

м.

Наличие дефектов на поверхности и в структуре элементарных армирующих волокон приводит к снижению их физико-механических характеристик и к увеличению разброса последних.

Минидефекты – это дефекты, размеры которых сравнимы с размерами толщины элементарного слоя композиционного материала. Они встречаются в виде структурных несовершенств и нарушений сплошности в элементарных слоях материала. К ним можно отнести:

– риски и царапины, соизмеримые с толщиной элементарного слоя;

– нарушение адгезионных связей на границе раздела волокно – матрица;

– волнистость и крутку армирующих волокон, разориентацию и их искривление;

– неравномерное распределение связующего в элементарном слое композита; разную степень натяжения армирующих волокон или нитей;

– обрывы отдельных элементарных волокон или нитей и другие дефекты.

Минидефекты связаны либо со структурным строением армирующего наполнителя, либо возникают в процессе технологической переработки составляющих компонент композиционного материала в изделие. К наиболее характерным структурным минидефектам можно отнести крутку элементарных волокон в нитях, регулярные и случайные искривления нитей, разориентацию армирующих волокон. Наличие этих дефектов в структуре материала является одной из причин того, что его физико-механические характеристики в изделиях значительно отличаются от подобных характеристик самих элементарных волокон. Крутка элементарных волокон, как известно, используется для повышения технологичности переработки нитей и жгутов в изделия. При этом устраняется пушение элементарных волокон и уменьшается их обрывность. Однако, наряду с этим, она приводит к снижению степени реализации упругих и прочностных показателей волокон в композиционном материале, которое сказывается при кручении высокомодульных волокон (борных и углеродных).

Разориентация армирующих волокон связана с их отклонением от заданного направления в процессе технологической переработки при изготовлении конструкций и обычно связана с несовершенством технологического оборудования или оснастки.

Регулярные искривления армирующих волокон свойственны в основном тканым наполнителям и определяются параметрами их переплетения. В отличие от регулярных искривлений случайные искривления являются в основном следствием несовершенства технологического процесса и наиболее часто возникают при изготовлении конструкций методом послойной намотки с последующей опрессовкой при термообработке, а также в процессе прессования изделий в замкнутой форме из-за неточности размеров заготовок, закладываемых в нее. Случайные искривления вызывают местное снижение жесткости материала и наиболее опасны в конструкциях, работающих на устойчивость.

Наиболее характерные минидефекты, связанные с нарушением сплошности структуры композиционных материалов, – поры и минитрещины в матрице. Появление пор связано с наличием в связующие большие количества растворителя или влаги, с неправильным выбором режимов термообработки (большая скорость нагрева, низкое давление). Кроме этого, на этапе пропитки материала при мокром методе формирования его структуры, могут образоваться воздушные пузырьки, запирающие каналы между волокнами и препятствующие капиллярному движению по ним связующего. Особенно большое количество мелких пузырьков, пор и раковин возникает при ручной выкладке конструкций из ткани, пропитанной полиэфирным связующим.

Анализ композиционных материалов с различной пористостью показывает, что с ростом длины пор и их содержания степень реализации прочностных и упругих параметров армирующих волокон в композитах уменьшается. Причем, наиболее опасны вытянутые поры, длина которых превышает критическую длину элементарного волокна в композиционном материале. Особенно пористость сказывается на сопротивлении слоистых материалов сдвиговым нагрузкам и в меньшей степени – изгибающим и растягивающим [14].

Наряду с этим, поры являются концентраторами напряжений в матрице и при внешнем воздействии на конструкцию или возникновении внутренних остаточных напряжений в материале могут быть источниками образования микро и минитрещин как в самой матрице, так и вдоль границы раздела волокно – матрица.

Минидефекты и большинство микродефектов статистическим образом распределены по объему композита и охватываются нижним пределом механических свойств композиционного материала.

2.2 Дефекты типа отслоений и их влияние на несущую способность конструкций

Конструкции из композитов очень чувствительны к технологическим дефектам, например, к расслоениям, непроклеям и трещинам, а также ко вновь образовавшимся дефектам (например, к надрезам поверхностных слоев). Дефекты типа расслоений могут появляться также на стадиях транспортировки, хранения и эксплуатации.

Они могут вызываться температурными напряжениями, локальными нагрузками, например, ударами по поверхности конструкции. Для поверхностного отслоения характерно выпучивание тонкого отслоившегося участка, которое может происходить при сжатии, поверхностном нагреве или растяжении из-за эффекта Пуассона, поэтому механика поверхностных отслоений обязательно должна учитывать геометрическую нелинейность хотя бы для отслоившейся области.

Типичные примеры отслоений приведены на рисунке 2.2. Процесс отслоения требует энергетических затрат, при этом потенциальная энергия изгиба накапливается только в отслоении, а работа разрушения складывается из работы, затрачиваемой на разрушение матричной прослойки и идущей на продвижение трещины в отслоении.

Каждому типу отслоений, представленных на рисунке 2.2, соответствуют свои критерии и границы устойчивости, определяемые по Гриффитсу или Эйлеру [14].
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7