Если зоны полезного и вредного взаимодействия действия разнесены в пространстве, то разрешение ФП можно искать при помощи следующих принципов разрешения ТП:
1, 2, 3, 7, 17, 24, 26, 30.
Правило 2
Если зоны полезного и вредного взаимодействия действия разнесены во времени, то разрешение ФП можно искать при помощи следующих принципов разрешения ТП:
9, 10, 11,15, 16, 18, 19, 20, 21,34.
Правило 3
Если зоны полезного и вредного взаимодействия совмещены в пространстве или во времени, то проблема решается c помощью системных переходов.
Системные переходы: в надсистему – 5, 12, 22,33;
в подсистему – 1, 27,40; отказ от системы – 6,25;
переход к антисистеме – 8, 9,13.
Правило 4
Если не удаётся применить первые 3 правила, можно использовать физико-химические приёмы.
Физико-химические приёмы: 31,32, 35, 36, 37, 38, 39.
У 4-ого правила есть и другое «если»: если зоны соприкасаются, то можно использовать физико-химические приёмы. Только разобраться «соприкасаются» зоны или «совмещаются» не всегда легко.
Получается, что разрешение проблем по первым трём правилам требует творческологических приёмов (разделить, обойти, отказаться от принципа вообще…), а применение четвёртого правила уже требует знания эффектов той науки, которая была теоретической основой при создании объекта, в котором возникло противоречие.
В задаче о регулировании пульпы регулирующий инструмент (заслонка), истирается пульпой в одно и то же время в одном и том же месте. Поэтому обращаем внимание на 3 правило, в котором совет отказаться от системы (она всё равно истирается и требует частых замен) лучше всего реализуется приёмом 25 (принцип самообслуживания). Пусть пульпа сама себя регулирует. Можно для регулировки иногда превращать пульпу в пробку, перекрывающую проход. Для этого можно использовать замораживание – размораживание или намагничивание – размагничивание.
Задача. Опухоль [3]
Для уничтожения злокачественной опухоли её облучают жёсткими лучами. Сильный луч хорошо уничтожает опухоль, но повреждает здоровую ткань. Ослабленный луч не уничтожает опухоль. Как быть?
Здесь очевидно физическое противоречие прямо из текста задачи.
ФП: луч должен быть сильным для уничтожения опухоли, луч должен быть слабым, чтобы не повреждать здоровую ткань.
Т.е. в одно и то же время в одном месте луч должен быть сильным, а в другом слабым. Годится правило 1. Из рекомендуемых приёмов полезно рассмотреть 1 (дробление), 2 (вынесение), 3 (местного качества). Изначально мини задача была решена при помощи разделения мощного излучателя на несколько слабых, но они расположены так, чтобы опухоль оказалась в центре, куда сходятся все лучи. Зато каждый слабый луч не мог повредить здоровую ткань на пути к опухоли.
Задача о ловле мышей [8]
Из живого уголка убежала ручная мышка. Она играет, не даёт посадить себя в клетку. Необходимо поймать мышку, использовав в качестве инструмента гранёный стакан.
Начинаем анализ с уточнения информации.
Какое действие необходимо совершить? – Поймать мышь Кто (что) должен её ловить? – Стакан.
Стакан – субъект – инструмент. Тогда мышь – объект – изделие.
Фраза «СТАКАН ДОЛЖЕН ПОЙМАТЬ МЫШЬ» не содержит противоречия. Генрих Саулович Альтшуллер назвал команды такого типа административными противоречиями. Противоречие найдём (сформулируем) тогда, когда поймём, что именно в процессе ловли получается, а что не получается вовсе. И поэтому выходит, что просто так эту мышь не поймать, надо что-то придумывать. Бегать за мышью со стаканом не будем, но плавленым сыром донышко внутри можно помазать.
Появляется некоторая определённость. Стакан стоит на столе. Мышь пришла, влезла в стакан, съела сыр и ушла. Стакан её НЕ УДЕРЖАЛ. Вот мы и заметили недостаток стакана: он не умеет удерживать мышь. А что он хорошо делает? он привлекает мышь запахом сыра, РАЗРЕШАЕТ В СЕБЯ ВЛЕЗТЬ. Создаём проект пары противоречий:
ПТ1: открытый стакан впускает мышь, но не удерживает его.
ПТ2: Закрытый стакан не впускает мышь, но удерживает его.
Этапы составления формулировки противоречия свойств (ФП)
Какой недостаток необходимо устранить? – Не удерживание мыши.
Какое подходит свойство? – Закрытый.
А какое противоположное свойство? – Открытый.
Нужно ли это противоположное свойство субъекту – стакану, – чтобы он хорошо выполнял своё основное назначение? – чтобы впускал мышь.
Если на 4 пункт получен утвердительный ответ, то развёрнутый ответ по всем 4 пунктам и даст противоречие свойств. Если ответ отрицательный, то ключевые слова, обозначающие «свойство» и «антисвойство» не годятся для этого противоречия. Необходимо искать новые, начиная с 1 пункта.
чтобы стакан удерживал мышь, необходимо, чтобы стакан был закрыт, и открыт, чтобы впустить мышь.
Получено правильное ФП (противоречие свойств), т.к. действительно, для впускания мыши стакан должен быть открыт.
Следует обратить внимание, что ключевые слова в ПС совпали с состояниями инструмента в схеме пары противоречий. Это не случайное совпадение. Всегда, когда решение удаётся выполнить самому субъекту (а не помощнику – икс элементу) так происходит. Это может быть подсказкой при поиске ключевых слов противоречия свойств.
Мы нашли ФП (противоречие свойств) из ТП1, можно аналогично строить ФП из противоречия ТП2: чтобы стакан впускал мышь, необходимо, чтобы он был открыт, и закрыт, чтобы он удерживал мышь.
Действительно, для удержания мыши стакан должен быть закрыт.
Ловля мыши решается двумя различными способами: в первом случае (мини задача) мышь сама вошла в стакан, её там лишь надо удержать, во втором случае надо закрытый стакан открыть, чтобы впустить мышь (макси задача).
В обоих случаях задача решается приёмом «разделение во времени» (правило 2).
Решение мини задачи: стакан на неустойчивой подпорке, мышь жертва своей собственной осторожности – смогла войти, но начав отдирать приманку, ловит сама себя.
Решение макси задачи: вместо стакана глубокая банка (бутылка) без крышки. Мышь прыгает в емкость на запах подсолнечного масла, а вылезти не может из-за отрицательного наклона стенки и скольжения лапок по маслу. Так ловят мышей на клубничных грядках.
Пыль в шахте
Эта задача подробно разобрана здесь в разделе «Задачи» (4.1). Вода нужна для смачивания и осаждения пыли, но не нужна, т.к. под ногами у шахтёра возникает ледяной каток. Проблема «вода нужна – вода не нужна» разрешается физическими эффектами. Утверждать, тем не менее, что здесь реализуется 4 правило, не берусь. Здесь все же разделение в пространстве: под ногами замёрзшая вода не нужна, а у работающего бура вода необходима.
Запайка ампул [9]
Ставшая классической задача о групповой запайке ампул тоже может быть отнесена к группе задач на разнесение противоречивых свойств в пространстве. И тоже решение получено при помощи применения физического эффекта (охлаждение лекарства, в то время как ампула запаивается).
Я не нашла примера явно на 4 правило, возможно, эти примеры где-то есть. [4] Поэтому утверждать, что 4 правило не имеет права на существование не могу.