И эти положения также нашли отклик во всемирной неврологии.
В эпоху перемен и научных открытий остается слишком мало места в дискуссии для толерантности научных идей.
Из воспоминаний Рагнара Гранита (1900–1991), шведского физиолога: «Шеррингтон и Павлов жестко критиковали друг друга из-за затруднения объяснений фактов при обсуждении научной проблемы в свете торможения и возбуждения нейронов».
В настоящее время наука только приближается к пониманию этих феноменов при использовании современной электроники для более тонкого изучения и понимания нейронных явлений головного мозга.
Научная сессия 1950 г. отвергала и гуморальную, и гормональную регуляцию и то, что химическая передача ацетилхолином и медиаторами противоречит учению нервизма.
Была отвергнута концепция стресса канадского эндокринолога Ганса Селье (1936), и на другой академической сессии (1952) не приняли это учение, считая его ошибочным и лженаучным, без экспериментального отвержения или подтверждения.
Павловская сессия вышла за рамки научных дискуссий и перешла на жесткую идеологическую критику личностей учеников школы И. П. Павлова и В. М. Бехтерева. Прежде всего следует отметить, что это было формальное отношение, а не по сути принципов и к продолжению научного спора И. П. Павлова и В. М. Бехтерева не имело никакого отношения.
Они работали в одном направлении, даже учились у одних и тех же учителей, а ученые Павловской сессии были зачастую учениками обоих учителей – Павлова и Бехтерева. Тем не менее оргвыводы сессии были жесткие, вплоть до лишения научных званий, должностей и закрытий лабораторий или институтов.
На десятилетия отечественная наука замерла, перешла на переписывание научных докладов, статей и затем окончательно утеряла наступательный темп в развитии новых научных идей.
После Павловской сессии перед А. В. Триумфовым встала дилемма почти шекспировская: «разрыва связи времен». Он был вынужден или закрыть свой проект, или внести поправки, чтобы сохранить не только личный труд, но и изыскания многих ученых. Это видно из содержания издания за 1951 г., где цитируются только архивные авторы: из благих намерений он избегает упоминания наших соотечественников, которые внесли также огромный вклад в изучение неврологии.
И как тут не вспомнить тезис: «А все-таки Земля вертится».
Все те классические сведения по анатомии и физиологии нервной системы и семиотики поражения нервной системы востребованы и в настоящее время.
Сам автор указывает, что не несет ответственности за некоторые компромиссные положения в опубликованном руководстве. Он пишет:
«Объединенная сессия Академии наук и Академия медицинских наук СССР, посвященная физиологическим проблемам И. П. Павлова, заставила многое пересмотреть и передумать. Данное издание по сравнению с предыдущим расширено и значительно переработано, изменены рисунки и схемы. Ряд положений пересмотрен коренным образом, например, явно противоречащее учению И. П. Павлова понятие о проекционных и ассоциационных корковых центрах, деление нервной системы на соматическую и вегетативную и др.
Критика товарищей по специальности, а также физиологов и патофизиологов поможет исправить допущенные ошибки. Автор».
Таким образом, А. В. Триумфов развязывает гордиев узел, и пишет, что цитоархитоническое изучение коры привело к разрешению противоречий и спорных вопросов о локализации функций в коре головного мозга.
Повседневный клинический опыт показывает, что существуют определенные закономерные зависимости расстройств функций от расположения патологического очага в нервной системе. Исходя из этого постулата, клиницист решает задачи топической диагностики. В то же время необходимо помнить, что академический спор о соотношении первой и второй сигнальных систем не разрешен, как и о корковых функциях гнозии и праксии, речи и психики.
Учение об анализаторах лежит в понимании единой функциональной системы: рецептор, проводник, кора с ее функцией анализа – синтеза, то, что называли центром, высшим, корковым отделом анализатора.
Триумфов А. В. предложил признать в такой транскрипции корковые проекционные и ассоциативные центры – области, которые существуют в пределах анализаторов.
Исходя из изложенного, краткое руководство сохранило практическое значение, отражая клинический опыт неврологов первого и второго поколений, оставляя за собой право расценивать клинические симптомокомплексы как поражение нервной системы в свете топической диагностики.
Клиническая неврология
Следующий период невропатологии с 60-х гг. ХХ в. был предопределен развитием и изысканием новой методологии в разделе клинической медицины. Детализированно изучаются клинические особенности при поражении нервной системы, и при этом каждое заболевание обрастает многообразием симптомов и синдромов. Клиническая неврология становится на позиции системных болезней. Системообразующие симптомы и синдромы определяют клиническую картину заболеваний нервной системы. Приоритетом изысканий становятся поиски специальных методов исследования, и в этой связи обосновываются нозологические формы. В этот период предлагаются многообразные варианты клинических классификаций. Постоянно расширяется формат исследований, что создает предпосылки рассматривать сложные взаимосвязи неврологических расстройств с другими клиническими дисциплинами. Также отводится значимая роль инструментально-лабораторным исследованиям при постановке диагноза: электроэнцефалографии, электромиографии, реографии, ангиографии, эхоэнцефалографии, биохимическим, гистопатологическим и гистохимическим исследованиям.
На практике в настоящее время применяются современные инструментально-диагностичекие методы исследования в неврологии: люмбальная пункция, церебральная и спинальная ангиография, миелография, рентгеновская компьютерная томография (спиральная КТ-ангиография, перфузионная КТ, КТ-миелоцистернография), электроэнцефалография, электронейромиография, вызванные потенциалы, магнитная стимуляция, магнитно-резонансная томография, эхоэнцефалография, ультразвуковая допплерография, дуплексное исследование сосудов головного мозга, генодиагностика, позитронная эмиссионная томография, однофотонная эмиссионная компьютерная томография.
Научная целесообразность следующего периода развития неврологии потребовала выхода из концептуального тупика философского детерминированного диалектического материализма сущности нервной системы в период схоластики и непререкаемого авторитаризма, поиск научного обоснования, что нервная система регулирует все функции организма человека и отвечает сложными рефлекторными актами на афферентные импульсы, поступающие из внутренней и внешней среды.
Этот период длился больше четверти века в отечественной неврологии, что способствовало развитию мультидисциплинарных дисциплин и расширению массы знаний как по специальности, так и по многочисленным смежным дисциплинам.
Авторы Е. И. Гусев, Г. С. Бурд и А. С. Никифоров проиллюстрировали в руководстве «Неврологические симптомы, синдромы, симптомокомплексы» (1999), которые составили свыше пяти тысяч терминологических статей, что помимо значимости многочисленных понятий, осложняющих ориентацию в симптоматике и нозологии нервных болезней, они в то же время демонстрируют широкую эрудицию врача-невролога.
В этот период развития неврологии изучение расстройств чувствительности дополнилось исследованиями клинических феноменов. В эти годы было показано, что в проведении чувствительных импульсов также играет роль ретикулярная формация. На всем протяжении ретикулярной системы к ней подходят спиноретикулярные аксоны и коллатерали спиноталамических путей. Пути, проводящие через медиальную петлю импульсы от более толстых периферических волокон (А- и отчасти В-волокна), и спиноретикулярные пути, идущие от более тонких периферических волокон (дельта-волны и волокна группы С), разряжаются в ретикулярной формации, а затем поступают импульсы в зрительный бугор и далее в кору головного мозга.
Учеными было высказано предположение, что существуют центробежные кортикоталамические волокна, идущие параллельно афферентным таламокортикальным волокнам, что передача импульсов протекает по замкнутым нейронным цепям. Кольцевая связь обеспечивает взаимное влияние сенсорной коры и зрительного бугра. Таким образом, сложный мультинейрональный рефлекс проявляется в нейронных кольцах, включая в систему нейроны спинного мозга, ядра ствола мозга, таламуса, ретикулярную формацию, обеспечивая функциональность «кольца обратной связи», с активным участием коры головного мозга.
Пирамидная система
Изучение двигательных функций дополнилось исследованиями, которые показали, что при очаге поражения в корковом отделе двигательного анализатора также отмечается частично контралатеральное перерождение пирамидного пути соответственно пораженному полушарию.
Пирамидный путь также связан с экстрапирамидной системой, которая через систему обратной связи влияет на активность целенаправленного движения.
Кора головного мозга, подкорковые узлы, мозжечок и ствол головного мозга находятся в тесном функциональном взаимодействии.
От клеток передних рогов спинного мозга через аксоны проходят импульсы для осуществления двигательных функций, а именно движения, силы и тонуса для выполнения рефлексов с мышц и суставов в ответ на различные раздражения проприо-, экстеро-, интероцепторов и ноцицептивных рецепторов.
В иннервации мышц принимают участие альфа- и гамма-пути, интрафузальные мышечные веретена (Р. Гранит). Благодаря этому скелетные мышечные волокна осуществляют тоническую функцию при участии волокон медленного действия и физическую активность при участии волокон быстрого действия.
Поза поддерживается тонической активностью, а движение определяется фазической функцией, которая осуществляется реципрокной иннервацией, например движение сгибателей бедра вызывает реципрокное торможение разгибателей того же бедра и сгибателей бедра на противоположной стороне с перемещением центра тяжести на другую ногу.
Рагнар Артур Гранит (1900–1991) – шведский физиолог, работал в лаборатории Чарлза Шеррингтона, где освоил методы электронейрофизиологии, потом стажировался в США, где продолжил изучение функций мышечных веретен. Ч. Шеррингтон и Д. Эксл установили определенную взаимосвязь между мышцами, мотонейронами и веретенными нервами.
В нашей стране после Павловской академической сессии в 1950 г., которая привела к устранению многих ученых от исследовательской работы, были свернуты проекты научных исследований в этом направлении. После сессии из науки вычеркнули Л. А. Орбели, П. К. Анохина, Н. А. Бернштейна, И. С. Бериташвили, а их работы легли на архивные полки. Идеи теории функциональных систем, а также теории о временных связях при образовании каждого условного рефлекса и другие идеи получили свое развитие и продолжение в научных исследованиях зарубежных ученых. Одним из них был Рагнар Гранит, который и завершил работу по обоснованию регуляции движений.
Экстрапирамидная система
Следующий этап понимания расстройств движений был связан с проблемами экстрапирамидной системы.
Известно, что экстрапирамидная система у человека создает фон предуготованности и дифференцированности движения, которое обусловлено деятельностью коры головного мозга.
Объяснение с позиций как локализационизма, так и эквипотенциализма природы патомеханизма поражения экстрапирамидной системы стало камнем преткновения в неврологии. Кибернетический подход П. К. Анохина предопределил особое решение проблемы, в том числе экстрапирамидных нарушений, но, к сожалению, эти идеи не вышли в свет, а так и остались в рукописи.
Известно, что экстрапирамидная система состоит из многочисленных ядерных образований, расположенных в подкорковых узлах больших полушарий и стволе головного мозга, которые постоянно участвуют в выполнении статодинамических функций.
Экстрапирамидная система способствует функциям движения, позы, тонуса мышц, а также выполнению движений, скорости, ритма, плавности, гибкости, что проявляется в осуществлении позы, положения конечностей, что важно для оценки статодинамической функции.
Для объяснения сложного взаимодействия механизма предуготованного движения было принято кибернетическое понятие: «кольцо обратной связи».
Импульсы из коры головного мозга поступают в стриопаллидарную систему, проходя через красное ядро в спинной мозг и одновременно поступая в зрительный бугор и оттуда обратно в кору головного мозга. Инициация передачи информации построена на возбуждающих и тормозящих импульсах.
Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера: