<…> Сочетание разных критериев позволяет уверенно прослеживать ряды гомологичных клеток на большом сравнительном материале – от вида к виду, от семейства к семейству и т. д. Данные о гомологиях нейронов, полученные на аннелидах, членистоногих, моллюсках и, в меньшей степени, других типах беспозвоночных, рассматриваются нами в упомянутой выше обзорной статье [15]. Нет нужды добавлять, что и у позвоночных однозначные клетки проявляют сходные черты специфичности.
Проблема становится гораздо сложнее при попытках перейти от одного зоологического типа к другому. Здесь мы встречаемся со столь разными планами организации – в частности, нервной организации, – что использование критерия положения становится весьма затруднительным. Отсутствие промежуточных форм между типами делает неприменимым и критерий непрерывности в его приложении к клеточным структурам нервных систем. На первое место выдвигается критерий специфического качества. Но, пользуясь им, особенно важно помнить, что специфические признаки клеток могут быть одинаковыми не только в тех случаях, когда клетки имеют одинаковое происхождение. Отдельные сходные особенности могут возникать и развиваться у разных нервных клеток самостоятельно, вследствие аналогичных условий и направления функциональной специализации.
<…> Признав, что в процесс ганглионизации вовлекается неоднородная популяция нейронов, мы тем самым убеждаемся в древности их гетерогенности, истоки которой надо искать на диффузной стадии существования нервных систем. Это важный вывод. Диффузная нервная система древних многоклеточных признается начальным пунктом разных линий эволюции нервной организации. Следовательно, при построении разных композиционных планов нервных систем клетки черпались из одного и того же диффузного нейронного фонда. Естественно думать, что специфические группы нейронов этого исходного фонда должны обнаруживаться в самых разных линиях эволюции, т. е. что отдаленные клеточные гомологии должны иметь место.
Возникновение древней неоднородности нейронных популяций толкуется нами как следствие того, что клетки с нейральными свойствами появлялись независимо друг от друга в процессе дифференцирования разных ненервных клеточных образований. С этой точки зрения нервная система понимается как генетически сборное объединение клеток, вначале выполнявших локальные регуляторные функции, а затем объединившихся для взаимной координации. <…>
Заключение
Мы привели некоторые доводы в пользу точки зрения, что естественная система нервных клеток должна иметь генеалогические основания. <…> В рамках этих взглядов обсуждена медиаторная специфичность нервных клеток, в которой мы усматриваем один из знаков их происхождения.
Неизбежная эскизность представленных соображений объясняется слабой разработанностью вопроса. Практически опущенной оказалась его онтогенетическая сторона. Читатель без труда заметит трудности, встающие перед предлагаемым истолкованием клеточной неоднородности нервной системы в связи с хорошо известным фактом, что у позвоночных вся нервная система развивается из эктодермальной закладки. Эти трудности лишь вскользь оговорены в статье замечаниями о возможных смещениях закладок и о независимом происхождении нейронов в разных производных эктодермы. До специального рассмотрения этой стороны вопроса известным утешением может служить указание М. С. Гилярова со ссылкой на Шпемана, что «эмбриологический критерий, выделенный многими исследователями, неадекватен решаемой проблеме гомологии» [3].
В общем, трудности, которые встают на пути работы по систематизации нейронов, не следует переоценивать. Задача вовсе не состоит в том, чтобы разложить все нейроны всех животных по каким-то полкам. Для начала достаточно определить руководящий принцип, и принцип, защищаемый в этой статье, состоит в том, что общностью свойств обладают нейроны одинакового происхождения.
Из списка литературы
[3] Гиляров М. С. Современные представления о гомологии // Успехи совр. биол. 1964. Т. 57. № 5. С. 300–316.
[15] Sakharov D. A. Cellular aspects of invertebrate neuropharmacology // Ann. Rev. Pharma-col. 1970. Vol. 10. P. 335–352.
1983
Нейротрансмиттер интегрирует мишени
[Тезисы доклада на симпозиуме «Физиологические механизмы детерминированных поведенческих реакций»]
Сахаров Д. А. Организация гетерогенных нейронных систем // XIV съезд Всесоюзного физиологического общества. Тезисы докладов. Л.: Наука, 1983. Т. 1. С. 175–177
При изучении клеточных механизмов поведения широко используют простые нервные системы беспозвоночных. В докладе на материале брюхоногих моллюсков рассматривается вопрос о роли клеточной гетерогенности в механизме управления поведением.
Свойство гетерогенности присуще всем реальным нервным системам. Более того, любая локальная нейронная система, выполняющая функцию управления, гетерогенна, то есть образована качественно разными клетками, специфичность которых выражается в способности продуцировать секрет определенного химического состава.
Рассмотрим пример конкретного поведения – «реакцию пробуждения» моллюска (нашим объектом служила виноградная улитка, сравнимые данные имеются для других гастропод). Улитку, находящуюся в состоянии спячки или укрывающуюся в раковине вследствие защитного рефлекса, можно побудить к деятельности подходящим раздражением. При этом наблюдается интегрированная поведенческая реакция, в которой различимы отдельные компоненты: включение генератора локомоции; включение генератора ритмических пищедобывательных движений радулы и глотки;
расслабление ретракторов, втягивавших ногу и щупальца; активация секреции слизи, необходимой для ползания по субстрату; учащение сердцебиений и т. д. Важнейший и остававшийся до сих пор незамеченным результат исследования клеточных механизмов заключается в том, что все компоненты этого поведенческого ответа обязаны посредничеству одного и того же медиаторного вещества – серотонина (5-НТ). При этом 5-НТ, секретируемый специфическими нейронами, управляет своими клеточными мишенями как контактно, так и дистантно: эффект 5-НТ на нейронный генератор жевательной моторики описывается в понятиях синаптической передачи, но при действии на некоторые другие мишени 5-НТ выступает в роли нейрогормона.
Из анализа клеточных механизмов следует, что 5-НТ является здесь фактором, интегрирующим поведение. Эта интегративная функция не обязательно осуществляется на каком-то определенном уровне иерархической структуры нервной системы моллюска: она реализуется и на уровне нейроэффекторной передачи (как, например, в случае управления сердцебиениями), и на уровне командного нейрона (управление моторикой радулы), и т. д. Существенно, что отдельные системы, участвующие в выполнении рассматриваемого поведенческого акта, в том или ином звене обеспечены такими рецепторами 5-НТ, которые позволяют этим системам отвечать на 5-НТ синергично. Разнообразие клеточных рецепторов 5-НТ и специфическое распределение этих рецепторов служат, таким образом, тому, чтобы разные клетки и органы участвовали в целостном поведении согласованно.
По нашей интерпретации, адекватные стимулы, вызывающие «реакцию пробуждения», посредством сенсорных клеток активируют 5-НТергические нейроны, вслед за чем 5-НТ становится фактором, определяющим поведенческий ответ на раздражение. В эксперименте активацию 5-НТергических нейронов можно имитировать введением 5-НТ в полость тела улитки: экзогенный 5-НТ вызывает хорошо скоординированное поведение, подобное «реакции пробуждения».
Интеграцию поведения улитки серотонином мы склонны рассматривать как пример широко распространенного класса явлений. Имеются разные основания считать, что другие продукты нейронной секреции принимают аналогичное участие в механизме управления поведением в простых нервных системах беспозвоночных. Известная амбивалентность всех медиаторных веществ становится понятной в контексте рассматриваемого механизма интеграции: нейротрансмиттер, оказывающий только возбуждающее или только тормозящее действие на разные мишени, не был бы способен выполнять роль интегрирующего фактора.
Идеализируя, поведенческий репертуар можно представить как набор синергических паттернов, каждый из которых управляется специфическим медиаторным веществом (точнее, продуктом нейронной секреции, способным действовать и контактно и дистантно). Такое представление о функционировании идеальной нейронной системы можно выразить формулой: один медиатор – одна синергия. Тогда гетерогенность нейронной системы становится мерой разнообразия поведения.
Сказанное касается простых нервных систем беспозвоночных, но сходным образом можно оценивать значение клеточной гетерогенности для сложных нейронных образований, таких как мозг млекопитающего, где те же рассуждения приложимы к локальным блокам нейронов. Идеализированная таким способом локальная нейронная система (например, модуль коры головного мозга) функционирует паттернами активности, при этом разнообразие паттернов (т. е. возможных состояний системы) определяется химической гетерогенностью источников секреции (т. е. афферентных входов и собственных интернейронов).
Предлагаемая идеализация позволяет концептуализировать явление химического разнообразия нейронов и синапсов, на этой основе могут строиться теоретические модели гетерогенных нейронных систем.
1985
Бессинаптическая идеализация нейронного ансамбля
[Доклад на конференции «Простые нервные системы»]
Сахаров Д. А. Синаптическая и бессинаптическая модели нейронной системы // Простые нервные системы. Ч. 2. Казань: КГУ, 1985. С. 78–80
Вкаждом локальном участке нервной ткани осуществляются быстрые, контактные взаимодействия между нейронами, традиционно описываемые в понятиях химического синапса. Изучение нейробиологической реальности на материале простых нервных систем позволяет переосмыслить основной постулат синаптической концепции – представление о синапсе как канале связи между нейронами. Концепцию анатомических (т. е. синаптических) каналов связи предлагается рассматривать как идеализацию, т. е. предельный, а не общий случай; в качестве противоположного теоретического предела выдвигается представление об идеальной бессинаптической системе, в которой избирательность контактных взаимодействий обеспечивается гетерохимичностью системы и химическими каналами связи. (Под идеализацией здесь подразумевается известный прием анализа, когда рассматривают теоретическую модель объекта, пренебрегая какими-то из его реальных свойств.)
Рассмотрим обе идеализации на примере системы из трех нейронов – А, Б и В, связанных таким образом, что система функционирует как трехфазный генератор (рис. 1). Нейрофизиологическая феноменология такого рода характерна для реальных нейронных систем (в частности, для нейрональных генераторов ритмической мышечной активности). Интерпретируя, как это принято, такие системы в понятиях синапса, им приписывают свойство анатомической упорядоченности, связывая так наз. постсинаптические потенциалы и упорядоченную нейронную активность с наличием специфических контактов, как это сделано на рис. 2. По синаптической модели, сферой действия медиатора является синаптическая щель – компартмент межклеточного пространства, входящий в состав анатомического канала связи, синапса. Эта особенность модели позволяет пренебрегать разнообразием медиаторов: для функционирования рассматриваемой (рис. 2) и любой другой, сколь угодно сложной, нейронной системы необходим и достаточен один медиатор. В самом деле, при описании нейронных систем знаниями о химизме нейронов принято пренебрегать как несущественными.
Рис. 1
Рис. 2.
где д – деполяризующее окончание, г – гиперполяризующее окончание
Предположим теперь, что система лишена специфических контактов:
вся поверхность каждого из трех нейронов наделена одинаковыми секреторными и рецепторными свойствами, отростки контактируют случайным образом, переплетаясь в общем, не разделенном на компартменты, внеклеточном жидком матриксе. Сможет ли такая бессинаптическая система по-прежнему функционировать так, как показано на рис. 1? Сможет – при условии, что каждый из трех нейронов выделяет собственный медиатор и имеет нужный тип рецепторов к медиаторам двух других нейронов.
Если медиаторы клеток А, Б и В обозначим как а, б и в; рецепторы к а, обеспечивающие де- и гиперполяризацию, как соответственно Р
и Р
и т. п., то эту гетерохимическую нейронную систему можно записать следующим образом:
Такая запись содержит столь же полные сведения о специфических связях, обеспечивающих фазировку активности нейронов рассматриваемой системы, как и рис. 2, но содержание этих двух записей существенно различно. Бессинаптическая модель, в отличие от синаптической, составлена из качественно разнородных клеточных элементов (и в этом смысле подобна реальным нейронным системам, которые всегда гетерогенны); это усложнение сопряжено с такими преимуществами, как простота конструкции (неструктурированный, анатомически не упорядоченный нейропиль, плексус и т. п.) и простота управления (медиатор выполняет роль фактора, интегрирующего систему в целом). Интегративную функцию медиаторных веществ, присущую бессинаптической модели, трудно продемонстрировать на высших животных, в мозге которых эта функция может быть разной в разных участках нервной ткани. Вместе с тем у просто организованных животных эта функция может иметь специфическое выражение на поведенческом уровне. Действительно, интеграция поведения медиаторными веществами показана нами и другими авторами для ряда беспозвоночных. Эти данные указывают на близость реальных нервных систем (по крайней мере, у беспозвоночных) к бессинаптической модели.
1986
Поведенческий выбор диктуется трансмиттерным балансом
[Фрагменты статьи]
Сахаров Д. А., Каботянский Е. А. Интеграция поведения крылоногого моллюска дофамином и серотонином // Журн. общ. биол. 1986. Т. 47. С. 234–245
Нервная система в целом и даже любая локальная нейронная система всегда гетерохимична, т. е. построена из нервных клеток, продуцирующих разные медиаторы. Статья посвящена модели, перспективной для изучения механизмов, посредством которых нейроны, различающиеся по своему медиаторному химизму, объединяются в систему.
О состоянии управляющей системы легче всего судить по конечному результату ее деятельности – поведению животного. В этом отношении удобны просто устроенные нервные системы беспозвоночных, у которых во многих случаях определенным поведением управляют определенные ганглии. Такой ганглий можно в первом приближении принять за локальную нейронную систему. Ганглии беспозвоночных всегда гетерохимичны и у многих форм построены из относительно небольшого числа идентифицируемых нейронов, что делает возможным дальнейший анализ клеточных механизмов наблюдаемого поведения.
Этими преимуществами обладает объект данного исследования – крылоногий моллюск Clione limacinа L. (Pteropoda), у которого, как будет показано ниже, четко представлено явление интеграции поведения индивидуальным медиаторным веществом. <…> Ранее одним из нас было показано, что у <…> клиона, или морского ангела, ритмические машущие движения локомоторных органов – крыльев, или параподиев, управляются автоматическим моторным центром, расположенным в педальных ганглиях, и сохраняются в препарате, состоящем только из крыла и педального ганглия [8]. <…> Свои поиски в этом направлении мы начали с анализа роли двух нейрональных аминов— дофамина и серотонина – в управлении поведением клиона. <…> Представлялось естественным в качестве первой задачи выяснить роль этих медиаторных аминов в поведении, связанном с реальным плаванием. Мы использовали не только сами медиаторы, но и их метаболические предшественники, а также некоторые другие нужные для анализа вещества. Предварительные результаты данной работы были коротко опубликованы ранее [3, 4].
<…> В относительно простом моторном поведении клиона различимы фоновое плавание и его изменения, вызываемые определенными стимулами или возникающие спонтанно и выражающиеся либо в угнетении, либо в активации плавания. <…> При фоновом плавании клион благодаря ритмическим движениям крыльев держится вертикально в том или ином слое воды или медленно перемещается, преимущественно в вертикальном направлении. <…> Угнетение локомоции наблюдается при тактильном раздражении передней части тела – головы, тактильных щупалец, крыльев, рудиментарной ноги <…>. При этом происходит отведение раздражаемого участка и кратковременная, длящаяся несколько секунд остановка крыльев, вследствие чего клион опускается в нижние слои воды. Такое поведение <…> регулярно наблюдается при соприкосновении тактильных щупалец плавающего клиона с поверхностной пленкой. <…> Фоновое плавание активируется при охоте и при нанесении тактильного раздражения на заднюю часть тела; в обоих случаях частота взмахов увеличивается в 1,5–2 раза и животные начинают перемещаться в направлениях, отличных от вертикального. <…> Естественным стимулом, вызывающим активацию плавания при охоте, является контакт головы клиона с жертвой, при этом резкое увеличение локомоторной активности сопровождается изгибанием туловища, благодаря чему моллюск плавает кругами, и выбрасыванием трех пар ловчих щупалец, которые при фоновом плавании втянуты в особые головные карманы. По наблюдениям Н. П. Вагнера [2], стремительные горизонтальные перемещения клионов имеют место при охоте за жертвой и в природных условиях. Активация плавания при тактильном раздражении хвоста – типичное проявление поведения, называемого активным избеганием. Нередко у клионов наблюдаются спонтанные эпизоды активированного плавания.
Таким образом, угнетение и активация плавания возникают у клиона спонтанно или в ответ на специфические стимулы; во втором случае эти изменения локомоторного поведения являются составной частью защитного (пассивное и активное избегание) или пищевого поведения. <…>
Обсуждение