Оценить:
 Рейтинг: 4.6

Автомобиль. 1001 совет

Год написания книги
2009
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Топливный насос высокого давления является основным прибором системы питания дизеля. Он предназначен для равномерной подачи строго определенной дозы топлива к форсункам двигателя под высоким давлением в течение определенного промежутка времени согласно порядку работы цилиндров двигателя. Состоит он из одинаковых секций по количеству цилиндров двигателя. Секция включает в себя корпус, втулку плунжера (гильзу), плунжер, поворотную втулку, нагнетательный клапан, который прижат штуцером к гильзе плунжера через прокладку.

П р и н ц и п р а б о т ы ТНВД состоит в следующем. Под действием кулачка вала и пружины плунжер совершает возвратно-поступательное движение. При движении плунжера вниз внутреннее пространство гильзы наполняется топливом и топливо подается насосом низкого давления в подводящий канал корпуса насоса. При этом открывается впускное отверстие и топливо поступает в надплунжерное пространство. Далее под действием кулачка плунжер начинает подниматься вверх, перепуская топливо обратно в подводящий канал, до тех пор, пока верхняя кромка плунжера не перекроет впускное отверстие гильзы. После перекрытия этого отверстия давление топлива резко возрастает и топливо через зазор между втулкой и плунжером, преодолевая усилие пружины, поднимает нагнетательный клапан и поступает в топливопровод.

Продвижение плунжера вверх вызывает повышение давления выше уровня давления, которое создается пружиной форсунки. В результате этого игла форсунки приподнимается и происходит впрыскивание топлива в камеру сгорания. Подача топлива продолжается до тех пор, пока винтовая кромка плунжера не откроет выпускное отверстие в гильзе. В результате давление над плунжером резко падает, нагнетательный клапан под действием пружины закрывается и пространство над плунжером разъединяется с топливопроводом высокого давления. Далее плунжер перемещается вверх, топливо перетекает в сливной канал через винтовую кромку плунжера и продольный паз. Количество топлива подается в форсунку с помощью зубчатой рейки, втулки и связывающего поводка. Продолжительность впрыскивания соответствующих порций топлива, подаваемых в цилиндры двигателя, зависит от угла поворота плунжера, так как изменяется расстояние, проходимое плунжером от момента перекрытия впускного отверстия до момента открытия выпуского отверстия винтовой кромкой.

Чтобы остановить двигатель автомобиля, необходимо прекратить подачу топлива. В этом случае рейкой устанавливают плунжер в такое положение, чтобы винтовая канавка оказалась обращенной в выпускному отверстию, и при перемещении плунжера вверх все топливо над ним по канавке через выпускное отверстие и топливопроводы попадает в бак.

Заданную частоту вращения коленчатого вала автоматически поддерживает всережимный регулятор частоты вращения. Он находится в развале корпуса топливного насоса высокого давления и приводится в движение от его кулачкового валика. Во время работы двигателя с частотой вращения коленчатого вала, соответствующей данному положению педали управления подачи топлива, центробежные силы грузиков регулятора уравновешены усилием пружин. Если нагрузка на спуске уменьшится, то частота вращения коленчатого вала начнет возрастать и грузы регулятора, преодолевая сопротивление пружины, немного разойдутся и переместят рейку топливного насоса высокого давления в положение, уменьшающее подачу топлива. Если частота вращения уменьшается, то центробежная сила грузов также уменьшается и регулятор под действием силы пружины переместит рейку в обратном направлении, что приведет к увеличению подачи топлива.

Для изменения момента начала впрыскивания топлива в зависимости от частоты вращения коленчатого вала предназначена автоматическая муфта опережения впрыскивания топлива. Изменяя момент впрыскивания топлива, автоматическая муфта улучшает экономичность двигателя и его пусковые качества. На конической поверхности переднего конца кулачкового валика топливного насоса высокого давления крепится шпонкой и фиксируется гайкой ведомая полумуфта. Ведущая полумуфта крепится на ступице ведомой и может на ней поворачиваться. Между ступицей и полумуфтой установлена втулка. Ведущая полумуфта приводится в действие распределительной промежуточной шестерней через вал с гибкими соединительными муфтами. На ведомую полумуфту вращение передается двумя грузами. Они качаются в плоскости, перпендикулярной к оси муфт на полуосях, запрессованных в ведомую полумуфту.

Одним концом приставка ведущей полумуфты упирается в палец груза, а другим – в профильный выступ. Пружины стремятся удержать грузы на упоре во втулке ведущей полумуфты. Если частота вращения коленчатого вала двигателя увеличивается, под действием центробежных сил грузы расходятся, и в результате ведомая полумуфта поворачивается относительно ведущей в направлении вращения кулачкового валика, что увеличивает угол опережения впрыска топлива. При уменьшении частоты вращения грузы под действием пружин сходятся. Ведомая полумуфта поворачивается вместе с валиком топливного насоса в противоположную сторону вращения, что уменьшает угол опережения впрыска топлива.

Для впрыскивания, распыления топлива и распределения его частиц по объему камеры сгорания служат форсунки. Главным элементом форсунки является распылитель, имеющий одно или несколько сопловых отверстий, которые формируют факел впрыскиваемого топлива. Форсунки могут быть открытого и закрытого типа. В четырехтактных дизелях применяют форсунки закрытого типа, сопловые отверстия которых закрываются запорной иглой, поэтому внутренняя полость в корпусе распылителей форсунок сообщается с камерой сгорания только в период впрыскивания топлива.

Подача заряда воздуха в цилиндр под давлением для повышения мощности дизельного двигателя называется турбонаддувом. Для наддува дизель оборудуют турбокомпрессором на выхлопных газах. Дизельные двигатели, оснащенные турбокомпрессором, более экономичны.

П р и н ц и п д е й с т в и я турбокомпрессора состоит в следующем. На валу турбокомпрессора сидят два турбинных колеса, размещенные в двух отдельных корпусах. Движущей силой для турбинных колес служат выхлопные газы дизельного двигателя. Они разгоняют вал компрессора, а поскольку ротор выхлопных газов и ротор свежего воздуха сидят на одном валу, то с такими же оборотами свежий воздух нагнетается в цилиндры. Применение турбокомпрессора повышает как мощность двигателя, так и крутящий момент. Предпосылкой эффективной работы двигателя является определенная скорость вращения вала компрессора, гарантирующая хорошую степень наполнения. Обычно двигатель вращается со скоростью не менее 3000 об/мин.

Элементы подачи топлива, очистки воздуха и выпуска отработанных газов

Топливный бак имеет заливную горловину с сетчатым фильтром, а также внутренние перегородки для устранения резких перемещений топлива при передвижении автомобиля. В пробке заливной горловины имеется паровоздушный охлаждающий клапан. В баке расположен поплавной датчик уровня топлива. Вместимость топливных баков обычно рассчитана на 500 км пробега. Изготавливают топливные баки из стального листа.

Топливный насос служит для подачи по топливопроводу бензина из бака к карбюратору. Располагают топливные насосы в развале двигателя или сбоку крышки распределительных шестерен. Наибольшее распространение получили топливные насосы диафрагменного типа. Топливный насос приводится в действие непосредственно от эксцентрика распределительного вала или через штангу, а также имеется рычаг для ручной подачи топлива. При набегании эксцентрика или давлении штанги на наружный конец двуплечего рычага насоса диафрагма штоком оттягивается вниз, а нагнетательная пружина сжимается. Над диафрагмой создается разряжение, под действием которого открываются впускные клапаны насоса. Топливо заполняет полость под диафрагмой. Когда эксцентрик сбегает с наружного плеча рычага или ослабевает давление штанги, диафрагма под действием нагнетательной пружины возвращается в исходное положение. Под диафрагмой создается давление топлива, под действием которого закрываются впускные клапаны и открывается выпускной клапан. Топливо из карбюратора вытесняется в карбюратор. Чтобы подать топливо к карбюратору при неработающем двигателе, нужно несколько раз нажать на рычаг ручной подкачки топлива.

На дизельных двигателях устанавливают топливоподкачивающий насос поршневого типа, который закрепляют на ТНВД. Привод осуществляется от эксцентрикового вала этого насоса.

Когда поршень движется вниз под действием пружины, над ним создается разрежение и происходит засасывание топлива в эту полость. А топливо, находящееся под поршнем, вытесняется в магистраль к ТНВД. При движении поршня вверх под действием эксцентрика топливо выталкивается через нагнетательный клапан в эту же магистраль и через фильтр тонкой очистки попадает к топливному насосу высокого давления. Поршень при достижении в магистрали установленного давления перемещаться не будет, так как давление пружины над поршнем и топлива под поршнем будет одинаковым.

Ручной насос установлен на корпусе топливоподкачивающего насоса. Если двигатель не работает, с помощью ручного насоса можно подкачивать топливо в магистраль. Кроме того, он используется для удаления воздуха из системы питания перед пуском двигателя. Топливопроводы высокого давления изготавливают из стальных трубок. Концы трубок имеют конус и прижаты накидными гайками к гнездам штуцеров топливного насоса высокого давления и форсунок двигателя.

Топливные фильтры сетчатого типа устанавливают помимо горловины топливного бака в крышке корпуса топливного насоса и штуцере поплавковой камеры карбюратора. Топливо из бака поступает в фильтр-отстойник грубой очистки, где от топлива отделяются механические примеси и вода. Съемный фильтрующий элемент фильтра состоит из тонких пластин. Топливо очищается, проходя через щели между ними. Фильтр грубой очистки дизельного топлива устанавливают на раме автомобиля. Крупные механические примеси и вода собираются в нижней части стакана, а из верхней через сетчатый фильтр подается топливо к топливоподкачивающему насосу.

Фильтр тонкой очистки имеет керамический фильтрующий элемент или медную сетку с мелкими ячейками, свернутую в рулон. Устанавливают его перед карбюратором. В дизельных двигателях фильтр тонкой очистки окончательно очищает топливо перед его поступлением в ТНВД и устанавливается в самой высокой точке системы питания дизеля для сбора и удаления через специальный клапан-жиклер попавшего в систему воздуха. Каждая секция фильтра имеет бумажные фильтрующие элементы.

Воздушный фильтр устанавливают на карбюраторе или соединяют с карбюратором при помощи воздушного патрубка. Он состоит из корпуса с масляной ванной, крышки с патрубком, фильтрующего элемента и стяжного винта с барашковой гайкой. В инерционно-масляном фильтре воздух проходит двойную очистку.

На легковых автомобилях чаще устанавливают воздушный фильтр с сухим фильтрующим элементом с двумя ступенями очистки. Наружный слой из нетканых синтетических волокон осуществляет первичную очистку, для вторичной очистки имеется внутренняя вставка из гофрированного картона.

Для подачи горючей смеси в камеры сгорания цилиндров двигателя служат впускные трубопроводы (коллекторы). В коллекторах есть сложная система каналов, которые предназначены для распределения горючей смеси от смесительных камер карбюратора к цилиндрам. Пространство между каналами коллектора сообщается с полостью охлаждения головок цилиндров. Таким образом, подогревается впускной трубопровод с целью более полного испарения топлива. Фибровые или картонные прокладки являются уплотнителями в местах соединения. Для отвода отработанных газов из цилиндров двигателя служат выпускные трубопроводы (коллекторы). Их изготавливают отдельно на каждый ряд цилиндров и крепят с наружной стороны головок цилиндров. В качестве уплотнителей применяют металлоасбестовые прокладки.

Для уменьшения шума выпуска отработанных газов служит глушитель. Он представляет собой цилиндр, внутри которого размещена труба с большим количеством отверстий и несколькими перегородками. Цилиндр может быть выполнен двойным с теплошумоизолирующей прослойкой. Глушитель соединен с выпускным коллектором жаростойкими стальными трубами.

П р и н ц и п р а б о т ы глушителя состоит в следующем. Отработанные газы, попадая в полость глушителя, расширяются, проходят через отверстия в трубе и перегородках, в которых снижают скорость. Резкое снижение скорости приводит к снижению шума при их выпуске. Кроме того, чтобы уменьшить шум при всасывании воздуха в смесительную камеру карбюратора, в воздушных фильтрах имеются полости большого объема. В этих полостях воздух в результате расширения резко теряет скорость, что приводит к уменьшению шума работы карбюратора.

На дизельных двигателях устанавливают воздушные фильтры сухого типа с двухступенчатой очисткой. Поначалу воздух засасывается через заборник, выведенный из подкапотного пространства, и попадает на первую ступень очистки. При этом в инерционной решетке он резко меняет направление движения. Крупные частицы пыли попадают в сменную крышку фильтра. Под действием эжектора, который расположен у глушителя, они отсасываются в атмосферу. Затем воздух поступает на вторую ступень очистки, которая оснащена сменным фильтрующим элементом из картона. Самые мелкие частицы пыли задерживаются в порах картонного фильтра и очищают таким образом поступивший воздух.

Система зажигания

Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах карбюраторного двигателя в соответствии с порядком их работы. На карбюраторных двигателях применяют контактную, контактно-транзисторную и бесконтактную системы зажигания.

Контактная система зажигания состоит из аккумуляторной батареи, генератора, катушки зажигания, прерывателя-распределителя, искровых свечей зажигания, выключателя зажигания, проводов высокого напряжения и проводов низкого напряжения.

П р и н ц и п д е й с т в и я контактной системы заключается в следующем. При включенном зажигании и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания, в результате чего образуется магнитное поле. Когда контакты прерывателя размыкаются, ток в первичной обмотке исчезает и исчезает вокруг нее магнитное поле. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток, вызывая возникновение в каждом из витков электродвижущей силы. Так как на вторичной обмотке количество витков, соединенных между собой последовательно, значительное, общее напряжение на концах достигает 20–24 кВ. Электродвижущая сила вторичной обмотки будет тем выше, чем больше скорость исчезновения магнитного потока. От катушки зажигания по проводам высокого напряжения через распределитель ток высокого напряжения поступает к искровым свечам зажигания, вызывая между электродами свечей искровой разряд, который воспламеняет рабочую смесь.

В настоящее время более широко применяют контактно-транзисторную систему и бесконтактую системы зажигания. Различных бесконтактных систем зажигания существует много. Принципы действия их примерно одинаковы, однако отдельные элементы существенным образом отличаются, например: транзисторное зажигание с индуктивным датчиком; электронное зажигание, управляемое компьютером с комплексом данных; электронное зажигание, управляемое процессорами, и др.

П р и н ц и п д е й с т в и я бесконтактной системы зажигания заключается в следующем. При включенном зажигании и вращающемся коленчатом вале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Бесконтактная система зажигания двигателя ВАЗ-2108 включает датчик-распределитель, свечи зажигания, электронный коммутатор, аккумуляторную батарею, генератор, катушку зажигания, провода низкого напряжения, провода высокого напряжения, монтажный блок, выключатель зажигания, штекерный разъем датчика-распределителя, плюсовую клемму катушки зажигания.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.

Важным параметром, определяющим работоспособность системы зажигания, является угол опережения зажигания, который индивидуален для двигателей определенной модели и колеблется от 0 до 10 градусов.

Угол поворота кривошипа коленчатого вала, при котором появляется искра между электродами свечи зажигания до момента подхода поршня к верхней мертвой точке, называют углом опережения зажигания. Сгорание рабочей смеси в цилиндре двигателя должно заканчиваться при повороте кривошипа на 10–15 градусов после верхней мертвой точки, т. е. в начале рабочего хода. Поэтому искровой пробой между электродами должен происходить несколько раньше подхода поршня к верхней мертвой точке.

Когда искра между электродами свечи появляется слишком рано, т. е. при большом угле опережения зажигания, давление газов в цилиндре возрастает до подхода поршня к верхней мертвой точке, что препятствует движению поршня и приводит к уменьшению мощности и экономичности двигателя, к ухудшению его приемистости. При работе под нагрузкой двигатель перегревается, появляются стуки, а при малой частоте вращения коленчатого вала в режиме холостого хода двигатель работает неустойчиво.

Если зажигание произойдет позже, т. е. при малом угле опережения зажигания, воспламенение рабочей смеси происходит при движении поршня уже после верхней мертвой точки. Давление газов будет намного меньше, чем при нормальном зажигании, что приведет к резкому падению мощности и экономичности двигателя и к перегреву двигателя. Поэтому угол опережения зажигания должен регулироваться автоматически, с учетом скоростного и нагрузочного режима двигателя. С увеличением частоты вращения коленчатого вала и уменьшением нагрузки на двигатель угол опережения зажигания должен увеличиваться, а при уменьшении частоты вращения коленчатого вала и увеличении нагрузки – уменьшаться.

Методы облегчения пуска двигателя. Для облегчения пуска двигателя применяют пусковые жидкости типа «Арктика», предпусковые подогреватели, электроподогрев аккумуляторных батарей, свечи накаливания для дизельных двигателей и др.

Трансмиссия

Механизмы трансмиссии автомобиля предназначены для передачи крутящего момента от двигателя к ведущим колесам, при этом крутящий момент может быть изменен по величине, соотношению между ведущими колесами и направлению. Трансмиссии могут быть механическими, электрическими, гидравлическими, комбинированными. На легковых автомобилях применяют механические, на грузовиках и автобусах механические и гидромеханические трансмиссии, на большегрузных автомобилях часто применяют электромеханические трансмиссии.

К агрегатам и узлам трансмиссии относят сцепление, коробку передач, главную передачу, дифференциал, приводные валы (полуоси).

Механизм сцепления. Сцепление предназначено для передачи крутящего момента двигателя коробке передач, кратковременного отсоединения двигателя от коробки передач и плавного их соединения. Сцепление предохраняет детали двигателя и трансмиссии от повреждений и перегрузок при быстром включении передач и резком торможении; в действие приводится через тросовую тягу от педали сцепления.

Основными деталями механизма сцепления являются ведомый диск, закрепленный на ведущем колесе коробки передач, ведущий (нажимной) диск с пружинами, который жестко прикреплен к маховику коленчатого вала двигателя.

П р и н ц и п р а б о т ы механизма сцепления заключается в следующем. При невыжатой педали сцепления нажимной диск, который называют крышкой сцепления, прижимает через мембранную пружину ведомый диск к маховику, обеспечивая таким образом передачу усилия от двигателя к коробке передач. При выжатой педали сцепления педаль через трос привода воздействует на подшипник выключения сцепления, который передвигается по валу коробки передач и нажимает на рычаги выключения сцепления. Рычаги отводят назад ведущий диск, пружины сжимаются, ведомый диск перестает прижиматься к маховику и передавать крутящий момент от двигателя к ведущему валу коробки. Плавность включения сцепления обеспечивается за счет проскальзывания дисков до момента полного прижатия их друг к другу.

Сцепление с двумя ведомыми дисками отличается от однодискового фрикционного механизма сцепления наличием среднего нажимного диска, который расположен между двумя ведомыми дисками.

На большинстве российских грузовых автомобилей применяют механический привод выключения сцепления, который состоит из педали, возвратной пружины, тяги, валика с рычагом, рычага вилки выключения сцепления, вилки, оттяжной пружины, муфты с упорным шариковым подшипником.

Выключают сцепление путем нажатия на педаль. В этом случае все детали привода приходят во взаимодействие, в результате чего подшипник муфты нажимает на внутренние концы рычагов выключения, отводится нажимной диск, а ведомый диск освобождается от усилия зажимающих пружин. Когда педаль отпускают, сцепление включается: муфта с упорным подшипником занимает исходное положение, освобождая рычаги выключения, и ведущий диск под действием пружин прижимает ведомый диск к маховику.

Коробка передач. Коробка передач служит для изменения силы тяги на ведущих колесах, изменяя крутящий момент, который передается от коленчатого вала двигателя на ведущие колеса при трогании с места, движении на подъем, разгоне и движении автомобиля задним ходом. Происходит это путем зацепления шестерен с различным числом зубьев.

Кроме того, коробка передач обеспечивает разобщение двигателя и сцепления от других механизмов трансмиссии при переключении коробки в нейтральное положение, например при движении на холостом ходу или во время длительной стоянки. В зависимости от модели автомобиля коробки передач могут быть четырех– и пятиступенчатые.

В общем случае коробка передач состоит из картера, ведущего вала с шестерней, ведомого вала, промежуточного вала, оси шестерни заднего хода, блока передвижных шестерен, механизма переключения передач.

Ведущий, ведомый и промежуточный валы изготавливают из стали и устанавливают на роликовых подшипниках; картер имеет верхнюю и боковую крышки. В нижней стенке картера есть отверстие для слива отработанного масла, а в боковой крышке находится отверстие для заполнения коробки свежим маслом. Картер отливают из чугуна.
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8

Другие электронные книги автора Виктор Александрович Барановский