1 Ки – 3,7 х К)
Бк (расп/сек), 1 рад – 0,01 Гр = 1 сГр, 1 мрад = 10 мкГр = 10 3 сГр; 1 бэр = 0,01 Зв = 1 сЗв; 1 мбэр = 10 мкЗв = 10
сЗв, 1 Р = 0,8 бэр = 0,8 сЗв = 0,87 рад = 0,87 сГр (для воздуха). Коэффициент перехода от дозы в воздухе к дозе в биологической ткани Д/Д = 1,09.
При пересчёте экспозиционной дозы в эквивалентную можно использовать энергетические эквиваленты: для воздуха 1 Р = 87,3 эрг/г, для любого вещества 1 рад = 100 эрг/г.
Для пересчёта некоторых единиц, встречающихся по тексту и рисункам книги:
– 10
Ки/м
= 10
Ки/л = 3,7 х Ю5 Бк/м
;
– 1 Ки/км
1 мкКи/м
= 37 кБк/м
; 1 мКи/км
= 37 Бк/м
;
– 10
Ки/л = 37 Бк/м
= 37 мБк/л.
2.4. Влияние радиоактивного загрязнения на живые организмы
Известно, что при радиационном облучении многих материалов их физические свойства изменяются.
Ионизирующая радиация в биосфере несёт потенциальную опасность патологических (в том числе летальных) и зародышевых последствий.
Сильные дозы радиации способны изменять различные свойства живой клетки или приводить её к гибели. Слабые дозы могут переноситься без каких-либо видимых нарушений, но вызвать необратимые процессы в структуре ДНК (мутации).
Воздействие радиоактивных изотопов на живой организм можно проиллюстрировать на примере наиболее опасных из них – стронция-90 и цезия-137, которые сходны по своим химическим свойствам с кальцием и калием. Стронций-90 проникает в костную ткань, а цезий-137 накапливается в мышечных тканях, замещая, соответственно, кальций и калий. Кроме того, стронций-90 и цезий-137 быстро усваиваются растениями и по пищевым цепям переходят в организм человека. Иод-131 накапливается в щитовидной железе, что приводит к учащённым случаям её рака. Воздействие ионизирующей радиации на человека представлено в табл. 2.3 [53].
Таблица 2.3
Чувствительность живых существ к облучению тем больше, чем выше уровень их развития и чем сложнее их организм.
Франсуа Рамад [49] определяет летальную дозу как дозу, которая вызывает гибель 50 % особей рассматриваемой популяции через определённый промежуток времени (ЛД50). При единичном (разовом) облучении для бактерий ЛД50 имеет значение порядка миллиона рад, для зелёных растений – несколько сотен тысяч, для членистоногих – около 5000 рад, для млекопитающих – несколько сотен рад. Рекордом для животного мира по исключительно высокой сопротивляемости к ионизирующей радиации с ЛД50, равной 150 000 рад, является скорпион и некоторые чешуекрылые.
Облучение приводит к уменьшению или полной потере животными и человеком способности вырабатывать антитела, ослабляется естественный иммунитет (явление, используемое хирургией для того, чтобы избежать отторжения пересаженного органа). Малые дозы облучения приводят к снижению сопротивляемости к инсектицидам у насекомых. Действие радиации усиливается многими факторами, прямо не связанными с радиацией, но увеличивающими вероятность заболевания другими болезнями.
Воздействие ионизирующего излучения на ткани организма приводит к биологическим эффектам (гибель клетки через несколько секунд или даже десятилетий), химическим изменениям (может вызывать химическую модификацию важных в биологическом отношении молекул), физико-химические изменения (образование новых молекул). Проникновение заряженных частиц в ткани приводит к сложным электрическим взаимодействиям на уровне атомов с непредсказуемыми последствиями.
В работе [8] приводятся результаты заболеваемости лейкозами и другими видами раковых заболеваний людей, испытавших на себе атомную бомбардировку в 1945 году (рис. 2.3.
Рис. 2.3. Частота (вероятность) раковых заболеваний в зависимости от времени после облучения (на примере исследования заболеваемости населения г. Хиросимы и Нагасаки [23]
После облучения в течение 2 лет идёт скрытый период развития лейкозов, через 6–7 лет наступает максимум заболеваемости, а через 25 лет заболеваемость лейкозами практически исчезает. Смертность от лейкозов среди тех, кто перенёс атомную бомбардировку в Хиросиме и Нагасаки, стала резко снижаться после 1970 года – дань лейкозам в этом случае уплачена полностью [51].
Раковые опухоли начинают развиваться через 10 лет после облучения, а максимум наступает через 30–40 лет.
Далее кривую хода заболеваемости предстоит ещё прослеживать, по-видимому, не один десяток лет (кривая построена по данным на 1984 г.).
Наиболее опасное воздействие радиации происходит на генетическом (наследственном) уровне, вызывая мутации. Такое воздействие грозит уже не отдельным индивидам, а целой популяции.
2.5. Критерии радиационного риска. Проблемы минимальной критической дозы
Человек рискует погибнуть везде – в самолёте, городском транспорте, турпоходе, на производстве, даже в квартире. Его жизнь сопровождается стихийными бедствиями – землетрясениями, ураганами, наводнениями, даже банальным гололёдом, которые приводят к смертельным случаям.
Как нестандартно заметил автор [43], один случай гибели человека на миллион особой тревоги у людей не вызывает: на то «воля божья»! Уровень индивидуального риска в искусственной среде обитания высок – 10
(1 смертельный случай на 1000 чел./год). Риск погибнуть от стихийных бедствий составляет 10
(1 человек на 10 000). Уровень радиации, который соответствует этому риску, составляет 0,1 бэр/год для населения и 0,5 бэр для персонала АЭС.
Естественный радиоактивный фон с учётом вероятности заболевания раком создаёт риск в 30 % от «среднежитейского» (0,3
10 ). Смертность от ежедневного (сознательного!) выкуривания 20 сигарет эквивалентна хроническому облучению в 500 бэр за жизнь, а проживание в экологически бедствующем городе соответствует дозе в 200 бэр за жизнь [43].
В 1990 г. Международная комиссия рекомендовала принять предельное значение доз облучения граждан, равное 1 мЗв/год (0,1 бэр), что соответствует, по их мнению, ожидаемому риску приблизительно 10
(один человек на 100 000).
Верхние пределы доз, вызывающие лучевую болезнь или поражение отдельных органов, в целом изучены хорошо, но относительно нижних пределов продолжается многолетняя полемика. Сегодня практически не установлена критическая минимальная доза радиации, при которой возникают заболевания и мутации. Точно лишь установлено, что разовая доза более опасна, чем та же доза, но полученная за длительный период времени, – последняя производит меньше мутаций, чем разовая.
Международная комиссия по защите от радиации сомневается в наличии «допустимой дозы». Нормы, которые она всё же рекомендовала в недалёком прошлом, сводятся к следующему: для всего человечества в качестве предельно допустимой дозы ионизирующей радиации можно принять дозу, равную удвоенному среднему значению дозы облучения, которому человек подвергается в естественных условиях.
То есть если вы и ваши предки жили в местности, где нормальный фоновый уровень радиации, например, по гамма-излучению составлял 20 мкР/час, то риск для вашего организма может наступить уже с 40 мкР/час. А если в ториевых песках Аравии, Индии и Бразилии племена во многих поколениях живут при фоновом уровне в 200 мкР/час, то риск для них начинается, если фон увеличится до 400 мкР/час.
Нет ничего менее убедительного, чем принятие подобных условий, называемых нормальными [53].
Франсуа Рамад утверждает, и трудно с ним не согласиться: «Что же касается мутагенных воздействий, то сегодня можно сказать: единственной дозой, не оставляющей никаких последствий, является нулевая доза!» [53].
2.6. Нормы радиационной безопасности