Оценить:
 Рейтинг: 0

Размышления об информации, или Информация к размышлению

Год написания книги
2022
Теги
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Как правило, CS-вид информации связан с врождёнными командами, а CR-вид – с использованием команд, задающих навыки. Однако внешние эффекторы также способны совершать рефлекторные действия, а при определённых тренировках можно выработать навыки, позволяющие осознанно управлять внутренними органами.

Последовательность завершённых действий и соответствующих им команд в случае внешних эффекторов образует поведенческие паттерны PR, которые также могут быть врождёнными или приобретёнными в результате опыта. Врождённые паттерны поведения определяют инстинкты – те образцы поведения, которые необходимы для осуществления фундаментальных функций биологических организмов, таких как питание, размножение и самосохранение.

Множество {PR} всех доступных поведенческих паттернов определяет пространство поведения конкретного организма, а последовательности PR – фактические формы поведения.

Подобные формы выстраиваются организмом в соответствии с целями, определёнными в ИС. А сами цели, в свою очередь, создаются на основе MR-информации всех доступных иерархических уровней. Первичный уровень, связанный с текущей внешней ситуацией, определяет оперативные цели, реализуемые с помощью отдельных поведенческих паттернов, а образный и вербальный – перспективные цели, осуществление которых требует создания сложных форм поведения и, возможно, новых поведенческих паттернов.

И хотя CR-информация, в отличие от MR-информации, является неосознаваемой и, следовательно, внутренне не наблюдаемой, результат её действия – поведение организма – вполне осознаваем и наблюдаем. Это создаёт возможность формирования новых поведенческих паттернов на основе осознаваемой обратной связи.

Как уже отмечалось, MS-информация, моделирующая конкретную ИС, использует первичный иерархический уровень, языком которого является сигнальная система. И этот язык, на основе которого в ИС осуществляется управление, носит динамический характер, отражая эволюцию окружающей среды и изменения самого организма, происходящие в процессе онтогенеза.

Однако управление системами может осуществляться не только на уровне отдельных организмов, но и на социальном уровне. В этом случае в качестве языка управления могут использоваться также команды, выстроенные на образном или вербальном уровне. И эти команды, в отличие от команд первичного уровня, вполне осознаваемы и, следовательно, могут блокироваться организмами на сознательном уровне, создавая в социумах конфликтные ситуации.

1.3.4. Генетическая информация GR- и GS-видов

Обычно под генетической информацией, или информацией G-типа, понимают наследственную информацию, закодированную в геноме клетки на молекулах ДНК или РНК. При этом текст, записанный четырёхбуквенным кодом нуклеотидов, в процессе активации генов переводится на язык белков, имеющих двадцатибуквенный код аминокислот.

С точки зрения современной молекулярной биологии генетическая информация полностью определяет онтогенез биологических организмов, для которых она является информацией GS-вида.

Однако в более широком плане в качестве генетической можно рассматривать также информацию, задающую строение, технологию изготовления и функционирование любых внешних материальных систем, в том числе и искусственных ИС (ИИС). Относительно биологического организма такая информация выступает как информация GR-вида. И носителем GR-информации является нервная система, организующая инстинктивное или осознанное поведение, приводящее в случае животных к строительству гнёзд, термитников, сот, ловчих сетей и многого другого, а в случае человека – ко всему многообразию искусственных материальных систем, созданных цивилизацией. Однако в человеческом социуме генетическая информация может содержаться не только в умах индивидов, но и на внешних носителях разнообразной природы.

Генетическая информация по отношению к системам, строение которых она задаёт, носит неактивный, потенциальный характер, определяя только генотип – возможность той или иной реализации системы. А для раскрытия этой потенции должна осуществиться процедура имплементации генотипа, в которой нематериальная сущность – последовательность символов – во взаимодействии с внешней средой целенаправленно материализуется в фенотип – индивидуальную структуру организма. При этом необходимым условием имплементации генотипа является существование механизмов считывания и интерпретации информации, а также возможность обладать и манипулировать материальными ресурсами, на основе которых будет выстраиваться система.

На клеточном уровне считывание GS-информации с ДНК-носителя происходит с помощью информационной РНК (ИРНК), интерпретация – с помощью рибосом, синтезирующих белки по матрице, представленной МРНК, а манипуляция – при посредстве транспортных РНК (ТРНК), доставляющих аминокислоты к рибосомам.

На организменном уровне GR-информация может быть представлена двояко. Или в виде врождённых поведенческих паттернов (инстинктов), обеспечивающих как интерпретацию GR-информации, так и манипуляцию материальными ресурсами посредством внешних эффекторных органов. Или в форме знаний, аккумулированных, предположительно, в нервной системе организма или на внешних носителях. В последнем случае интерпретация и манипуляция осуществляются на сознательном уровне, а внешние эффекторные органы могут дополняться эффекторными устройствами, представляющими собой орудия труда.

Имплементация генетической информации разных видов происходит по-разному. Для информации GS-вида имплементация связана с копированием ДНК, делением клеток и трансформацией зиготы в многоклеточный организм. А для информации GR-вида – со строительством материальных систем на основе использования внешних эффекторных органов.

Но каким бы путём ни происходила имплементация, генетическая информация должна нести в себе также и технологию построения системы. В биологических организмах такая технология определяется регуляцией экспрессии генов, причём регуляция должна происходить как на уровне клеток, так и на уровне органов и организма в целом.

Возможно, для демонстрации всей сложности проблемы регуляции будет уместно воспользоваться музыкальной метафорой. Фактически для реализации онтогенеза геном должен содержать «партитуру» экспрессии генов, позволяющую продуцировать нужные белки в нужных количествах в нужное время и в нужных клетках, а также встроенного дирижёра, управляющего оркестром, в котором инструментами являются геномы каждой клетки.

Итак, если мы надеемся, что геном содержит всю необходимую для онтогенеза информацию, то он должен включать следующие составляющие:

динамическую модельную информацию MS (t);

технологию построения организма;

врождённый тезаурус ИС для M- и С-типов информации;

генетическую информацию GR-вида, необходимую для построения внешних материальных систем.

Содержится ли эта информация в геноме или нет, можно узнать только на основании его полного прочтения и осмысления. В настоящее время геном человека секвенирован практически полностью. В результате выявлено порядка 3,1 миллиарда нуклеотидных звеньев и всего лишь около 20 000 генов, информативная часть которых занимает не более 1,5 % генома. Таким образом, подавляющая часть генома не кодирует белки или функциональные РНК, а выполняет регуляторные и иные, неизвестные пока, функции.

Конечно, зная содержание генома и умея манипулировать генами, можно выяснить их роль в онтогенезе организма. Однако, несмотря на все успехи, мы по-прежнему далеки от понимания того, каким образом врождённая модельная и управляющая информация закодирована в геноме и закодирована ли она там вообще.

В принципе, при онтогенезе могли бы быть использованы принципы самосборки, реализующиеся в природе на примере кристаллов, вирусов или рибосом. Но и это не решает многочисленных проблем, связанных с морфогенезом и врождённым поведением организмов. И скорее всего, механизм самосборки не работает на многоклеточном уровне, так как он бы вносил неконтролируемое разнообразие в процесс имплементации генома.

Действительно, известно, что развитие организма из зиготы происходит детерминированным и достаточно устойчивым к неблагоприятным воздействиям образом. Это подтверждается, в частности, сходством однояйцевых близнецов, у которых признаки, контролируемые небольшим числом генов, совпадают с вероятностью выше 99 %. Поэтому можно утверждать, что вся необходимая для онтогенеза информация или должна содержаться в геноме зиготы, или использовать другие, неизвестные в настоящее время, носители, существующие, возможно, и вне материальных систем. Мы ещё не раз вернемся к этому предположению, когда будем обсуждать «трудные» проблемы физики, биологии, философии и психологии.

Но трудный вопрос содержится уже и в самой природе генетической информации. Если при рассмотрении происхождения модельной и управляющей информации в биологических организмах можно было сослаться на врождённый тезаурус, предоставленный материнским организмом, то изначальное происхождение генетической информации в рамках физикалистского мышления можно объяснить только как результат эволюции, происходящей по воле случая и под давлением естественного отбора. То есть, по существу, вопрос о происхождении генетической информации сводится к вопросу о происхождении биологической жизни.

Но если посмотреть на эту проблему шире и рассматривать также искусственные ИС, то легко видеть, что G-информация может порождаться не только случаем, но и родительскими ИС, обладающими способностью к целенаправленному созданию новых систем. Такие способности являются главной составляющей творческого разума, присущего человеку.

Конечно, в современных искусственных информационных системах (ИИС), в отличие от естественных ИС, не встроены самовоспроизведение и самоэволюция, требующие сложных схем метаболизма. Но с информационной точки зрения природа ИИС аналогична природе биологических организмов, и в основе ИИС должна лежать GR-информация, созданная человеком и содержащая те же составляющие, что и биологический геном. А именно:

проектную документацию, моделирующую ИИС;

технологии изготовления, включающие необходимые материалы, условия и последовательность процессов производства ИИС;

программное обеспечение, являющееся врождённым тезаурусом ИИС.

И конечно, имплементация ИИС невозможна без механизмов чтения и интерпретации GR-информации, а также без манипулирования материальными ресурсами, то есть без производства, являющегося для ИИС материнским организмом.

Таким образом, в природе существует возможность создавать новые ИС на основе генетической информации, порождённой разумом родительских ИС. И подобная возможность также могла быть использована в случае биологических организмов. Но, безусловно, это не решает, а лишь отодвигает вопрос о происхождении начальной биологической G-информации, так как череда родителей всё равно должна начинаться с разума, который никто не сотворил.

Существует ещё один аспект генетической информации – философский. В настоящее время основной задачей научного познания природы является изучение материальных систем на всех иерархических уровнях – от струн и элементарных частиц до галактик и Вселенной в целом. Знание, которое мы при этом получаем, всегда является относительным, ограниченным нашими познавательными возможностями.

Однако предполагается, что существует некая абсолютная истина – такое знание об изучаемых системах, которое никогда не может быть опровергнуто. Но в науке нет критериев, позволяющих виртуальную реальность наших знаний сравнивать с реальностью природы и определять, насколько близко мы подошли к абсолютной истине.

И в то же время, генетическая информация, лежащая в основе искусственных материальных систем (ИМС), будучи порождена разумом, может рассматриваться как абсолютное знание об этих системах, как знание, которое не может быть пересмотрено. И с этой точки зрения GR-информация будет являться абсолютной истиной для созданной на её основе ИМС.

Возможно также, что генетическая информация, не являясь материальной сущностью, первична по отношению к отображающей её материальной системе. И в этом смысле она совпадает с платоновским понятием идеи как трансцендентного мира истинного бытия, по образцу которого существуют вещи чувственной реальности. Здесь у Платона идея выступает и как сущность вещи (модельная информация об ИМС), и как проект, включающий в себя закономерности перехода от идеи к воплощаемой вещи (технология имплементации ИМС), и как принцип её существования (без генетической информации не существуют и ИМС). Отличие идеи от генетической информации состоит лишь в том, что GR-информация вовсе не трансцендентная сущность, а реальность, которую можно и познавать, и создавать.

И в заключение отметим, что любая классификация информации в настоящий момент носит грубый характер ввиду узости наших знаний о её природе. Углубление этих знаний должно привести не только к более подробной классификации, но и, возможно, к пересмотру принципов, положенных в её основу. Так же, как это произошло с четырьмя античными стихиями – землёй, водой, воздухом и огнём, превратившимися в таблицу элементов Менделеева. Но заметим, что и эта первоначальная классификация материи оказалась не столь уж наивна, так как правильно подмечала четыре агрегатных состояния вещества – твёрдое, жидкое, газообразное и плазменное.

1.4. Информационные системы – чудо природы или основа её существования?

Вопрос о том, что представляют собой информационные системы (ИС), кажется довольно простым и одновременно по-философски сложным. Всё зависит от того, какие критерии используются для идентификации системы как информационной.

В принципе, любая система, имеющая дело с фиксацией, хранением, передачей или обработкой информации, могла бы рассматриваться как ИС. Однако в таких системах, основанных на физических взаимодействиях, не происходит ничего особенного, что выделяло бы их из ряда других физических систем. И в то же время существует класс систем, представленных биологическими организмами, поведение которых невозможно понять лишь на основе каузальных физических законов. В поведении этих систем присутствует телеологическая составляющая, связанная с осуществлением целей, возникающих в информационных процессах, что принципиально отличает такие системы от физических.

В работе [Коштоев, 1991] описаны важнейшие особенности биологических ИС, такие как необходимость присутствия в системах изначальных знаний, способность к целенаправленному поведению и возможность образовывать иерархии, связанные общими целями. Однако без понимания природы информации и её места в наблюдаемой реальности, сформулировать критерии, выполнение которых превращает физическую систему в информационную, по-видимому, невозможно.

Информационная парадигма (ИП), отвергающая атрибутивные подходы в понимании информации и рассматривающая её как самостоятельную реальность, в положении (П2) прямо указывает на неразрывность понятия информации и ИС. Поэтому с точки зрения ИП способность системы оперировать содержательной информацией является тем основным критерием, который позволяет идентифицировать ИС. При этом не важно, на какой основе реализована сама система. В принципе, возможно даже существование ИС, не связанных с физической реальностью.

В физическом мире вне ИС информация, запечатлённая на материальных носителях, является всего лишь последовательностью различений чего-либо и полностью лишена содержания, способного влиять на происходящие процессы. Такая информация носит потенциальный характер. Она может быть многократно реплицирована или уничтожена, а время её жизни определяется только сохранностью физических носителей.

Для того чтобы перейти в активное состояние и приобрести смысл и содержание, потенциальная информация должна быть воспринята системой, обладающей соответствующими кодами и некоторым, необходимым для интерпретации информации, тезаурусом. Такой тезаурус включает систему правил, позволяющих преобразовывать воспринимаемую информацию в нужные формы, а также набор знаний, представленных в виде моделей окружающей реальности. При этом сама воспринимающая система должна обладать механизмом, способным на основе тезауруса осуществлять содержательную интерпретацию информации.

Системы, обладающие таким минимально необходимым набором информационных качеств, хотя ещё и не способны воздействовать на процессы в физическом мире, уже являются информационными. Подобные системы принципиально отличаются от физических систем, так как в них существует множество состояний, переход в которые не может быть предсказан только на основе физических законов. Другими словами, в этих системах кроме физических присутствуют дополнительные информационные (или ментальные) степени свободы.

Вопрос о том, что вообще представляют собой системы – физические или информационные – затрагивает большое число разнообразных аспектов, связанных со структурой и с организацией взаимодействия множества элементов, которые могут быть ассоциированы в системе, а также с выявлением связей системы как целого с окружающей средой. Но главное – с пониманием природы возникновения интегративных качеств системы, не сводимых к качествам составляющих её элементов.

С этих позиций ИС также можно рассматривать как организованную совокупность подсистем, обладающих информационными функциями, которые совместно порождают новое качество – возможность оперировать содержательной информацией.

Для реализации простейшей пассивной ИС необходим следующий минимальный набор функциональных подсистем:
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7