Оценить:
 Рейтинг: 0

Частотный синтез на основе ФАПЧ. Обзор методов синтеза

<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

и F

при тех же коэффициентах деления 17 и 7, то получится результирующий коэффициент деления

N= (17?7) / (17+7) =4.9583 (3)

и соответствующая ему частота равна Fc=49,583 (3) МГц. При этом частоты на выходах соответствующих делителей равны F

=2,916 (6) МГц и F

=7,083 (3) МГц, а их сумма равна 10 МГц, которая, как и в предыдущем случае, используется для сравнения в фазовом детекторе.

Недостатком рассмотренной структуры является необходимость включения фильтра Ф, чтобы избавиться от комбинаций типа +/-nF

+/-mF

. Это существенно ограничивает возможности широкого выбора коэффициентов K и L. Кроме того, стремление обеспечить высокое разрешение по частоте приводит к необходимости соответствующего увеличения этих коэффициентов и сужения полосы пропускания фильтра, что – и то и другое – соответственно снижает быстродействие синтезатора. К недостаткам можно также отнести и относительно сложный алгоритм выбора требуемой частоты сигнала. Для каждых конкретных требований к диапазону частот синтезатора, шагу сетки частот и быстродействию необходима таблица с предварительно рассчитанными значениями коэффициентов K и L.

Однако, благодаря бесспорным достоинствам схемы по сравнению со схемами, использующими как целочисленные, так дробные коэффициенты деления, данная схема могла бы найти практическое применение, хотя и ограниченное отмеченными недостатками. Более обстоятельно схема проанализирована в работе [38].

2.5. Расширение диапазона частот

Понятно, что пределы перестройки ГУН ограничены, и в первую очередь из-за необходимости обеспечения допустимого уровня шума. Генераторы с перекрытием по частоте более октавы практически не применяются. Расширить диапазон частот синтезатора можно, используя набор из нескольких коммутируемых генераторов. Однако это довольно сложно и дорого. Но если уже получен октавный диапазон, то далее можно расширять диапазон частот синтезатора вниз по частоте достаточно простым способом, как это показано на рисунке 12.

Рис.12. Схема расширения диапазона частот Fc

На рисунке показан пример получения диапазона частот Fc=F

/2, где F

 – исходный октавный диапазон. Чтобы избежать попадания в спектр сигнала Fc её субгармоник, последующие делители частоты, после используемых, отключаются. В качестве делителей частоты целесообразно использовать триггеры с выходным напряжением в виде меандра, не содержащим второй гармоники. Поэтому синусоидальный сигнал на выходе Fc может быть получен с помощью довольно простых фильтров нижних частот октавного диапазона.

Данный способ расширения диапазона частот широко используется на практике [39], в частности в разработках фирм Phase Matrix / NI, США, (FSW-0010), Stanford Research Systems, США (7SG392, 7SG394, 7SG396), AnaPico Inc, Швейцария (APSIN6010), Advantex, Москва (SG8), Микран, Томск (PLG06) и некоторых других фирм.

3. Схемы с дробным делителем частоты и компенсацией помех дробности и другие схемы

Перейдём далее к рассмотрению однопетлевых структур с дробным делителем частоты и различными вариантами схем для компенсации помех дробности.

3.1. Схема Бреймера-Джиллета

Один из таких вариантов представлен на рисунке 13. Если в общих чертах, то она почти одновременно запатентована авторами Бреймером и Джиллетом [40, 41]. Правда, в описаниях к их патентам много внимания уделено построению оригинальных схем ДДПКД, хотя это не касается самого принципа компенсации помех дробности и потому не отражено на приведенном рисунке.

Рис.13. Схема Бреймера-Джиллета

ДДПКД представлен в виде целочисленной части с коэффициентом деления N

и дробной части, выполненной на аккумуляторе (накапливающем сумматоре). Импульс переполнения последнего передаётся в целочисленную часть, и общий коэффициент деления увеличивается при этом на единицу, из-за чего и возникает помеха дробности.

Для её компенсации используется ЦАП, с помощью которого формируется сигнал – копия помехи, продетектированной в ФД. В сумматоре напряжения с выходов ЦАП и ФД складываются в противофазе, благодаря чему помеха дробности подавляется.

Понятно, что степень подавления помехи зависит от точности ЦАП и от точности сумматора, и эти точности, естественно, ограничены. Поэтому если ёмкость аккумулятора довольно большая (чтобы получить достаточно мелкий шаг сетки частот), нет смысла брать ЦАП той же ёмкости, её ограничивают 12?14 разрядами, подключаемым к соответствующим старшим разрядам аккумулятора.

3.2. Вариант с интегратором

Другой вариант [42] схемы компенсации помехи дробности показан на рисунке 14. В нём используются, в основном, те же блоки, что и в предыдущей схеме. Добавлен только интегратор, а ЦАП предназначен для другой цели.

Рис.14. Вариант схемы с интегратором

Каждое переполнение аккумулятора вызывает скачёк частоты на выходе делителя частоты. Чтобы его скомпенсировать, необходимо создать сигнал, соответствующий получаемому при этом отклонению фазы, и сложить его в противофазе с напряжением на выходе фазового детектора. Для этого и служит интегратор. Он может быть выполнен на базе операционного усилителя.

Требуемый уровень компенсирующего сигнала обратно пропорционален коэффициенту деления. Поэтому при достаточно большом частотном перекрытии синтезатора, и, следовательно, широком диапазоне изменений коэффициента деления, необходимо управлять коэффициентом передачи интегратора, для чего и служит ЦАП. Он может быть использован в качестве источника для питания интегратора, чтобы напряжение на его выходе контролировалось управляющим кодом. В предыдущей схеме такая возможность отсутствовала. Но и там можно ввести дополнительный ЦАП, питающий уже имеющийся (который должен быть умножающего типа) и подключенный к управляющей шине.

3.3. Схема Кокса

По своей структуре схему Кокса [43] можно отнести к прямым цифровым синтезаторам с некоторыми особенностями. Сигнал в ней получается делением опорной частоты в переменное дробное число раз с последующей компенсацией помех дробности путём программируемого временного сдвига сигнала на выходе схемы.

Схема представлена на рисунке 15. Она содержит программирующее устройство для задания целочисленной и дробной частей коэффициента N, поглощающий счётчик (обозначен на схеме как: N), аккумулятор для формирования дробной части коэффициента деления и генератор задержек, управляемый цифро-аналоговым преобразователем (ЦАП). Поглощающий счётчик тактируется импульсами опорной частоты Fr, а аккумулятор – сигнальными импульсами частоты Fc. Поглощающий счётчик вместе с аккумулятором образуют, в целом, схему ДДПКД.

Рис.15. Схема Кокса

Работу схемы можно рассмотреть на конкретном примере. Положим, что при опорной частоте, равной Fr=100 МГц, требуется получить частоту сигнала Fc=30 МГц. Это значит, что при некотором разрешении по частоте импульс на выходе синтезатора должен появляться через каждые 3,3333 периодов опорных импульсов. Для этого целочисленная часть коэффициента деления N устанавливается равной N

=3, а для обеспечения дробной части этого коэффициента, число на входе аккумулятора равно 3333 при его ёмкости, равной 10000. Понятно, что при этом искомая частота 30 МГц будет получена с погрешностью 300 Гц. Положим также, что поглощающий счётчик и аккумулятор оба включаются в работу при нулевых начальных условиях.

Поглощающий счётчик устроен таким образом, что импульсом переполнения аккумулятора один опорный импульс с его входа вычёркивается.

Первые три опорных импульса беспрепятственно проходят через поглощающий счётчик, создавая первый сигнальный импульс, который и далее беспрепятственно проходит через генератор задержек на выход схемы. Это потому, что, во-первых, импульс переполнения аккумулятора отсутствует, а во-вторых, содержимое аккумулятора, как и ЦАП, равно нулю и, следовательно, генератор задержек не создаёт временного сдвига для этого импульса. Данный импульс, воздействуя на аккумулятор, меняет его содержимое с нуля до 3333.

Следующие 3 опорных импульса также беспрепятственно проходят через поглощающий счётчик, создавая на его выходе второй сигнальный импульс. Однако далее этот импульс проходит на выход схемы с задержкой на 0,3333 периода Tr опорных импульсов, которая создаётся генератором задержек под воздействием сигнала с выхода ЦАП. Этот сигнальный импульс увеличивает содержимое аккумулятора до значения 6666.

После трёх последующих импульсов Fr получается третий сигнальный импульс на выходе поглощающего счётчика, который проходит на выход схемы с задержкой 0,6666Tr в соответствии с новым значением содержимого аккумулятора. Аналогичным образом формируется четвёртый сигнальный импульс с задержкой 0,9999Tr.

На пятом сигнальном импульсе аккумулятор переполняется, его содержимое сбрасывается до значения 3332, а его импульсом переполнения вычёркивается один импульс Fr на входе поглощающего счётчика. И далее схема действует по описанному алгоритму, выравнивая, с помощью генератора задержек, расстановку сигнальных импульсов во времени, чтобы сделать процесс периодическим, то есть исключить помеху дробности.

Один из возможных вариантов схемы генератора задержек показан на рисунке 16. При отсутствии импульса с выхода ДДПКД ключ замкнут, что предотвращает заряд конденсатора C от источника тока.

Рис.16. Схема генератора задержек

В то же время триггер находится в состоянии «0». С появлением упомянутого импульса ключ размыкается, и источник тока заряжает конденсатор C по линейному закону. Напряжение с конденсатора сравнивается в компараторе с напряжением на выходе ЦАП, и при их равенстве возникает импульс на выходе компаратора, который переводит триггер в состояние «1». Временной интервал между импульсами с выходов ДДПКД и триггера является линейной функцией напряжения с выхода ЦАП. Параметры схемы рассчитываются таким образом, чтобы максимальное напряжение с выхода ЦАП соответствовало задержке, равной одному периоду импульсов опорной частоты Fr.

По эффективности действия рассмотренные выше схемы примерно эквивалентны. Из-за относительно невысокой точности цифро-аналогового преобразования, суммирования и аналогового интегрирования в них не удаётся достичь высокой спектральной чистоты сигнала, чем и ограничивается область их использования.

3.4. Схема Ундервуда

Схема представлена на рисунке 17 [44]. В качестве ДДПКД в ней используется накапливающий сумматор (аккумулятор) для деления опорной частоты Fr с коэффициентом N=Q/A, где Q – ёмкость аккумулятора, а A – накапливаемое им число, содержащееся в управляющем коде N. Импульсы переполнения аккумулятора поступают на один из входов фазового детектора ФД, являясь, таким образом, «опорой» для петли ФАПЧ, формирующей частоту Fc сигнала. Другой вход ФД подключен к выходу ГУН.

Рис.17. Схема Ундервуда

В итоге, частота сигнала Fc равна средней частоте импульсов на выходе аккумулятора, то есть
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6