ЦНС – центральная нервная система
ЧАЭС – Чернобыльская атомная электростанция
чел. – Зв – человеко-Зиверт
ЧХВ – чужеродные химические вещества
ЭПС – эндоплазматическая сеть
ЭЭГ – электроэнцефалограмма
ЮНЕП – Программа ООН по окружающей среде
ЮНЕСКО – Организация Объединенных Наций по вопросам образования, науки и культуры
CAS – Служба химической информации США
D – поглощенная доза
DL
– см. ДЛ
pH – водородный показатель
Sr – стронций
t – температура
U – уран
U
– фактор неопределенности
Х – экспозиционная доза
Введение
Элементы медицинской экологии и экологической медицины достаточно долго развивались в рамках различных дисциплин. И только на конференции в Кливленде (США) в 1986 г. экологическая медицина была провозглашена самостоятельной научной дисциплиной.
Медицинская экология – наука, изучающая характер взаимодействия человека и окружающей среды, устанавливающая причинно-следственные связи между качеством среды и состоянием здоровья, разрабатывающая методы диагностики и профилактики неблагоприятного влияния факторов окружающей среды на человека.
Целью изучения медицинской экологии является выработка у врачей умений осуществлять индивидуальную и популяционную профилактику экологически обусловленных заболеваний и патологических состояний.
Основными задачами изучения дисциплины являются:
– формирование у студентов современных представлений о системности взаимоотношений в биосфере и обществе;
– понимание причинно-следственных связей между качеством среды обитания человека и состоянием его здоровья, роль первичной медицинской профилактики в здравоохранении.
Пособие разработано в соответствии с требованиями действующего Государственного образовательного стандарта высшего профессионального образования по врачебным специальностям и учебной программы преподавания дисциплины «Медицинская экология», и состоит из трех разделов: «Медико-биологические аспекты медицинской экологии», «Влияние на организм человека неблагоприятных экологических факторов» и «Методические рекомендации для студентов по курсу медицинской экологии».
В первом разделе рассматриваются вопросы экологического риска для здоровья человека, связанные с качеством окружающей среды. На современном уровне представлены механизмы адаптивных реакций человека, вопросы влияния ритмических изменений геофизических факторов внешней среды на организм человека, а также технологические и экологические формы воздействия человека на биосферу, вопросы комплексной медико-экологической оценки конкретных территорий, освещается влияние радиации на организм человека на клеточном, субклеточном и организменном уровнях, рассматриваются основные источники радионуклидного загрязнения окружающей среды и основные понятия экспертизы безопасности человека.
Второй раздел посвящен влиянию антропогенных загрязнителей атмосферы, гидросферы, литосферы на формирование соматопатологии человека, показана роль различных экологических факторов риска в развитии патологии человека, роль погодно-климатических изменений в возникновении и характере течения заболеваний, хроно-биологические аспекты в клинике, особенности течения заболеваний внутренних органов. Рассматривается профессиональная деятельность как один из экологических факторов, определяющий здоровье человека, особенности воздействия лечебных факторов в курортных зонах, а также интегральной роли фактора питания в условиях экологического неблагополучия и проблемам алиментарной адаптации.
Третий раздел включает всю необходимую информацию по подготовке студентов к занятиям.
Для достижения поставленных целей и задач учебное пособие включает не только информационный материал по отдельным разделам, но и вопросы для самостоятельной подготовки студентов к занятиям, контрольные вопросы, тестовые задания. Для более эффективной оценки усвоения прочитанного текста в конце пособия приведены основные термины и понятия.
Глава 1
Медико-биологические аспекты медицинской экологии
1.1. Человек – биосистема. Теория функциональных систем П. К. Анохина. Понятие об адаптации
…организм без внешней среды, поддерживающей его существование, невозможен.
И. М. Сеченов
Условием развития живых организмов является их взаимодействие с окружающей средой. Открытые системы рассматриваются как системы, которые могут обмениваться с окружающими телами энергией, веществом и информацией. Открытая система всегда динамическая: в ней непрерывно происходят изменения, и, естественно, она сама подвержена изменениям. Благодаря сложности данных систем в них возможны процессы самоорганизации, которые служат началом возникновения качественно новых и более сложных структур в ее развитии.
Онтогенез человеческого организма есть непрекращающийся процесс постоянного движения, направленный на поддержание количественно-качественных особенностей в организме человека. Причем для дальнейшего самообновления и поддержания динамического равновесия организма нужны дополнительные вещества, энергия и информация, получить которые он может лишь при взаимодействии с внешней средой. Исследуя организм как открытую систему, необходимо целостное его рассмотрение, установление взаимодействия составных частей или элементов в совокупности.
В медицине исторически под влиянием естественных наук, а главное – анатомических исследований, несмотря на провозглашенный (начиная с основополагающих работ С. Г. Зыбелина, М. Я. Мудрова, Е. О. Мухина, И. М. Сеченова, И. П. Павлова и др.) принцип целостности организма, сложилось органное мышление.
Любой современный учебник по важнейшим фундаментальным дисциплинам, таким, например, как анатомия, физиология, гистология и другие, строится по органному принципу. Органная патология – это болезни сердца, легких, печени, желудочно-кишечного тракта, почек, мозга и т. д. Врачи разделились по органным специальностям. Патогенез, диагностика и лечение непосредственно связываются с функцией конкретных органов, и профессиональный взгляд врача, как правило, в основном направлен в сторону больных органов (Судаков К. В., 1999).
П. К. Анохин сформулировал новый подход к пониманию функций целого организма. Взамен классической физиологии органов, традиционно следующей анатомическим принципам, теория функциональных систем провозглашает системную организацию функций человека от молекулярного вплоть до социального уровня.
Функциональные системы (по: Анохин П. К.) – самоорганизующиеся и саморегулирующиеся динамические центрально-периферические организации, объединенные нервными и гуморальными регуляциями, все составные компоненты которых содействуют обеспечению различных полезных для самих функциональных систем и для организма в целом адаптивных результатов, удовлетворяющих его потребности.
Теория функциональных систем, таким образом, радикально изменяет сложившиеся представления о строении организма человека и его функциях. Взамен представлений о человеке как наборе органов, связанных нервной и гуморальной регуляцией, данная теория рассматривает организм человека как совокупность множества взаимодействующих функциональных систем различного уровня организации, каждая из которых, избирательно объединяя различные органы и ткани, так же как и предметы окружающей действительности, обеспечивает достижение полезных для организма приспособительных результатов, обусловливающих в конечном счете устойчивость метаболических процессов.
С этих же позиций адаптация человека определяется как способность его функциональных систем обеспечивать достижение значимых результатов.
Анализ механизмов саморегуляции жизненно важных констант организма (кровяное давление, напряжение углекислого газа и кислорода в артериальной крови, температура внутренней среды, осмотическое давление плазмы крови, стабилизация центра тяжести в площади опоры и т. д.) показывает, что аппаратом саморегуляции выступает функциональная).
«Все функциональные системы, независимо от уровня своей организации и от количества составляющих их компонентов, имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем» (Анохин П. К., 1971).
Рис. 1. Схема саморегуляторных механизмов функциональной системы (по: Анохин П. К.):
1 — пусковой стимул (раздражение); 2 – обстановочные афферентации; 3 – память; 4 — доминирующая мотивация; 5 — афферентный синтез; 6 — принятие решения; 7 — акцептор результата действия; 8 – программа действия; 9 — эфферентные возбуждения; 10 – действие; 11 — результат действия; 12 — параметры результата; 13 – обратная афферентация
К узловым механизмам, лежащим в основе структуры поведенческого акта любой степени сложности, относятся: афферентный синтез; стадия принятия решения; формирование акцептора результата действия; формирование самого действия (эфферентный синтез); многокомпонентное действие; достижение результата; обратная афферентация о параметрах достигнутого результата и сопоставление его с ранее сформировавшейся моделью результата в акцепторе результата действия (рис. 1).
Одни функциональные системы своей саморегуляторной деятельностью определяют устойчивость различных показателей внутренней среды – гомеостаз, другие – адаптацию живых организмов к среде обитания.