Оценить:
 Рейтинг: 0

Биосфера и ноосфера

Год написания книги
1931
Теги
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

[микрометр], т. е. 10

см

. В 1 см

может заключаться 10

неделимых, и при быстроте их размножения – в сутки около 63 делений каждой клетки – кубический сантиметр может быть ими заполнен в течение нескольких – 11–13 – часов, если в него попадет одна такая бактерия. В действительности бактерии живут не изолированно, а образуют колонии и при благоприятных условиях они заполняют 1 см

еще быстрее.

Процесс деления неизбежно происходит таким темпом, если бактерия живет в условиях жизни, этому благоприятных, прежде всего, если температура среды это дозволяет. Если температура падает, быстрота чередования поколений уменьшается, и это изменение может быть выражено в точной числовой формуле. Все время бактерия дышит, т. е. находится в тесной связи с растворенными вводе газами. Ясно, что количество бактерий путем размножения никогда не может достигнуть в 1 см

той величины, которая определяет в нем количество газовых молекул, т. е. 2,706 • 10

(число Лошмидта). Газовых молекул в 1 см

, заполненном водой, будет во много раз меньше. Мы видим здесь предел размножению, ставящийся явлениями дыхания, свойствами газообразного состояния материи.

§ 30. Пример бактерий позволяет выразить движение, наблюдаемое в биосфере благодаря размножению, в другой форме, чем мы это делали до сих пор.

Представим себе период в истории Земли, который гипотетически неправильно, как увидим, допускают геологи, время, когда океан покрывал не три четверти земной поверхности, а всю планету. Э. Зюсс относил это «вселенское море» (по-гречески «Панталасса») в археозойскую эру. Бактерии в это время, несомненно, его населяли. Их следы известны в слоях древнейшего палеозоя. Характер минералов археозойских слоев и, особенно характер их ассоциаций с не меньшей несомненностью доказывают нахождение бактерий во всем археозое – в самых древнейших, доступных геологическому изучению пластах нашей планеты. Если бы в этом «вселенском море» температура была благоприятна для их жизни и если бы в нем не было препятствий их размножению, шаровая бактерия, в 10

см

объемом, в 1,47 суток – меньше чем в полутора суток – образовала бы в этом море сплошную пленку в 5,10065 • 10

км

.

Пленки бактерий, образующиеся благодаря их размножению, занимают хотя и меньше, но все же весьма значительные площади в биосфере.

В 90-х годах прошлого столетия проф. М. А. Егунов указывал на существование тонкой пленки серных бактерий на всей площади Черного моря. Эта пленка равнялась бы в таком случае поверхности Черного моря, т. е. 411 540 км

, и лежала бы на границе кислородной поверхности, т. е. на глубине 200 м. Однако исследования проф. Б. Л. Исаченко, участника экспедиции Н. М. Книповича (1926), не подтверждают этих данных. Это же явление в менее грандиозных размерах, но отчетливо выражено в динамических равновесиях живых организмов, например, на границе между пресной и соленой водой и Мертвом озере Кильдинских островов, которое на всей своей поверхности всегда покрыто сплошной пленкой пурпурных бактерий (К. Дерюгин, 1926).

Другие микроскопические, но все же более крупные организмы постоянно дают примеры подобных явлений. От времени до времени пленка, образованная этими организмами океанического планктона, покрывает пространство в тысячи квадратных километров. Подобные пленки образуются довольно быстро.

Во всех этих случаях можно изобразить геохимическую энергию этих процессов таким же образом, а именно в виде передвижения этой энергии на земной поверхности, причем скорость растения пропорциональна скорости размножения вида, в нашем случае бактерии Фишера.

При своем максимальном развитии, когда данный вид заселит всю земную поверхность (5,10065 • 10

км

), эта энергия за определенное время, разное для каждого вида, пройдет также максимальное расстояние, равное земному экватору, т. е. 40 075 721 м.

Бактерия Фишера, размером в 10–12 см

, при образовании пленки во «вселенском море» Э. Зюсса развила бы энергию, скорость продвижения которой по земному диаметру была бы равна около 33 100 см/с.

Это явление может быть выражено в иной форме. Скорость V, равная 33 100 см/с, может быть рассматриваема как скорость передачи жизни, геохимической энергии, вокруг земного шара; она равна средней скорости вращения вокруг него бактерии путем размножения. В 1,47 суток бактерия размножением обтекает земной шар, совершает вокруг него во «вселенском море» полный оборот…

Скорость передачи жизни, по наибольшему расстоянию, ей доступному, величина V, будет той характерной для каждого однородного живого вещества постоянной, которой мы будем пользоваться для выражения геохимической энергии жизни.

§ 31. В основе этой величины, всегда отличной для всякого вида или расы, сказываются, с одной стороны, характер механизма размножения, а с другой стороны, те пределы возможному размножению, которые кладутся размерами и свойствами планеты.

Скорость передачи жизни не есть простое выражение свойств автономных организмов или их совокупностей – живых веществ; она выражает их размножение в соответствии с биосферой как планетное явление. В ее выражение неизбежно входят элементы планеты – величины ее поверхности и ее экватора. Мы имеем здесь аналогию с некоторыми другими свойствами организма, например с его весом. Вес организма на Земле и того же организма на другой планете будет иной, хотя организм может при этом не измениться. Точно так же и скорость передачи его жизни, например, на Земле или Юпитере, площадь и экватор которого иные, чем Земли, будет иная, хотя бы сам организм оставался при этом неизменным.

Этот специфически земной характер скорости передачи жизни вызывается тем ограничением, которое свойства и характер Земли как планеты, биосферы как космического явления вносят в проявление заложенного в организмах как в автономных созданиях механизма размножения.

§ 32. Область явлений размножения мало обращала на себя внимание биологов. Но в ней – отчасти незаметно для самих натуралистов – установилось несколько эмпирических обобщений, которые отчасти кажутся нам сами по себе понятными, так мы с ними свыклись.

Среди этих обобщений необходимо отметить следующие:

1) Размножение всех организмов выражается геометрическими прогрессиями. Можно выразить это в единообразной формуле:

2

= N

где п – число дней с начала размножения;

? – показатель прогрессии, который для одноклеточных организмов, размножающихся делением, соответствует числу поколений в сутки;

N

– число неделимых, существующих благодаря размножению через п дней.

Характерным для каждого живого вещества является ?. В этой формуле никаких пределов, никаких ограничений ни для n, ни для ?, ни для N не заключается.

Процесс мыслится бесконечным, как бесконечной является прогрессия.

2) Эта бесконечность возможности проявления размножения организма сказывается в подчинении этого проявления в биосфере, т. е. растекания живого вещества, правилу инерции. Может считаться эмпирически установленным, что процесс размножения задерживается в своем проявлении только внешними силами; он замирает при низкой температуре, прекращается или ослабляется при недостатке пищи или дыхания, при отсутствии места для обитания вновь создаваемых организмов. Уже в 1858 г. Ч. Дарвин и А. Уоллес высказали эту мысль в форме, которая была давно ясна натуралистам, вдумывавшимся в эти явления, например К. Линнею, Ж. Бюффону, А. Гумбольдту, К. Эренбергу, К. М. Бэру: если не будет внешних препятствий, всякий организм в разное, определенное для него время может размножением покрыть весь земной шар, произвести по объему потомство, равное массе океана или земной коры.

3) Темп размножения, сказывающийся в таком эффекте, отличен для каждого организма и находится в тесной зависимости от размеров организма. Мелкие организмы, т. е. организмы в то же время и более легкие, размножаются гораздо быстрее, чем большие организмы, т. е. организмы в то же время большего веса.

§ 33. В этих трех эмпирических положениях явления размножения организмов выражены вне времени и пространства или, вернее, в геометрических и механических бесформенных однородных времени и пространстве.

В действительности жизнь в той форме, в какой мы ее изучаем, есть чисто земное – планетное – явление, не отделимое от биосферы, созданное и приспособившееся к ее условиям.

Перенесенная в отвлеченное время и отвлеченное пространство математики жизнь является фикцией, созданием нашего разума, отличным от реального явления.

Если мы хотим иметь точные, научные представления в наши положения о ее свойствах, мы должны внести поправки в отвлеченные понятия времени и пространства; эти поправки могут в корне, как мы видим в данном случае, изменить наши выводы, в которых свойства земных времени и пространства не были предусмотрены.

§ 34. На Земле организмы живут в ограниченном пространстве, одинаковом по размерам для всех них. Они живут в пространстве определенного строения в газообразной или проникнутой газами жидкой среде. И хотя время нам представляется безграничным, но время какого-нибудь процесса в ограниченном пространстве, каким является размножение организмов, не может являться безграничным. Оно тоже будет иметь предел, различный для каждого организма в зависимости от характера его процесса размножения.

Неизбежным следствием этого положения является ограничение всех величин, определяющих явления размножения организмов в биосфере. Должны существовать наибольшие числа неделимых, которые могут дать разные живые вещества. Эти числа – N
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9