Где на сегодняшний день отмечены наибольшие прорывы? В анализе БД, распознавании образов, поиске незаметных на первый взгляд связей и закономерностей. Отсюда возникает простое заключение. Если бы человек имел бесконечное время на решение той или иной задачи, был дисциплинирован и имел неограниченный объем памяти, то он бы успешно решал все задачи, где компьютер уже сегодня первенствует над человеком. Самые знаменитые достижения компьютеров, подаваемых как ИИ, связаны с победой в играх – от шахмат до го, от покера до «бесконечных шашек». Любая игра имеет правила. А там где есть правила, путь к успеху лежит в комбинаторике и написании алгоритмов.
Приведенные соображения позволили информационным подразделениям ФБР совместно с Лабораторией искусственного интеллекта корпорации Google выработать следующее инженерное определение ИИ. Именно оно положено в разработку концепции архитектуры и перечня программных решений ФБР: ИИ – это программно-аппаратный комплекс, обеспечивающий поддержку и/или принятие результативных решений в динамичной, неустойчивой среде в установленное время, на основе заведомо неполной, нечеткой и не имеющей полной доказательной базы информации. Применительно к одним задачам ИИ самостоятельно принимает решения, но в большинстве случаев является элементом гибридного интеллекта, взаимодействуя с человеком.
Данное определение является инженерным по трем обстоятельствам. Прежде всего, оно задает критерий. Во-первых, результативность решений не носит абстрактного характера, а определяется в каждом конкретном случае постановщиком задачи. В одних случаях у ИИ может отсутствовать право на единственную ошибку, а в других – результативным решением может оказаться показатель, выше уже сложившегося уровня успешности решения проблемы.
Во-вторых, данное определение не привязывается к конкретным видам харда или софта. Возможно, завтра у нас появятся полноценные квантовые компьютеры. В университете Нотр-Дам уже сегодня идут эксперименты по использовании в качестве элементной базы компьютера живых бактерий. То же самое с софтом. Было бы самонадеянным утверждать, что и завтра вычислительные комплексы будут использовать машинное обучение и нейронные сети. Наконец, третий, принципиальный момент в определении – это то, что ИИ обязан научиться работать с неполной и частично лживой информацией. Это, пожалуй, самая сложная проблема.
Термин «ИИ» зачастую заменяет такие сложные и непонятные лицам, принимающим решения, термины, как нейронный сети, глубокое машинное обучение, дискриминантный анализ, многомерная статистика, вычислительная лингвистика и т. п. Согласно данным контент-анализа, приведенного Стэнфордским университетов в 2017 г., ИИ не в социальных СМИ, а в научных изданиях используется как синоним того или иного математико-статистического метода. Условно назовем это маркетинговым использованием термина ИИ. Наиболее широко это явление проявилось в англосаксонских странах, прежде всего США и Великобритании.
Для европейских публикаций и исследований характерно другое использование термина ИИ. В Европе, особенно в Германии и во Франции, ИИ по сути стал синонимом любых сложных экспертных систем, в основе которых лежит блок поиска, обработки и анализа информации. Такое понимание ИИ связано с тем, что в силу целого ряда факторов в большинстве стран ЕС не получили широкого развития наиболее современные методы дискретной математики и работа идет в направлении совершенствования информационно-аналитических систем, которые были созданы в конце XX – начале текущего века.
Свое понимание ИИ имеется в Японии, одной из трех лидирующих стран в этой сфере. Они понимают под ИИ программы, которые могут выполнять интеллектуальные функции человека вне зависимости от сферы их применения.
Авторы уже указанного доклада Центра новой американской безопасности, понимают ИИ также как автор этого термина – знаменитый математик, кибернетик, создатель множества языков программирования Джон Маккарти. Он определили ИИ, как «вычислительные методы, позволяющие решать нечеткие и противоречивые задачи в условиях многокритериального выбора и хронической неполноты информации».
С учетом разработок в области когнитивных вычислений, осуществленных уже после смерти Маккарти, Центром новой американской безопасности предлагается следующее, наиболее общее и в то же время рабочее определение: ИИ – это программноаппаратные вычислительные комплексы полного информационного цикла (включающего восприятие, фильтрацию, обработку, хранении информации, выполнение аналитических и синтетических когнитивных функций), позволяющие в режиме человек-машина или автономно принимать и реализовывать решения в сложной, динамичной и неопределенной среде.
Данное определение подчеркивает несколько ключевых концептов, без понимания которых лица, принимающие решения, не смогут сделать правильного выбора:
Во-первых, ИИ – это не машинное обучение, не нейронные сети и не другие виды программных продуктов. Это – всегда программно-аппаратные комплексы, в которых роль физических компонентов, как минимум, не меньше, чем информационных.
Большая часть программных методов ИИ была хорошо известна еще в 60-70-е гг. прошлого века, однако не могла быть реализована, поскольку компьютеры не обладали необходимым быстродействием. Тенденцией последних лет стало стремление ключевых производителей ИИ как можно больше наиболее важных функций упаковывать в непосредственно встроенный процессор и софт. Такая архитектура гарантирует производителям ИИ монополию на рынке. Кроме того, дальнейший скачок в области ИИ связан с изменением типов процессоров. Уже сегодня на смену кремнию приходят квазиквантовые компьютеры. Известно об успешной разработке и опробовании в Израиле сверхскоростного графе-нового компьютера. Известно, что в ряде стран мира были проведены успешные испытания процессоров для ИИ, созданных на алмазной основе, процессоров с так называемой «алмазной подложкой». Наконец, в 2017 г. команда Стэнфордского университета, университета г. Сеул, компании «Сименс» и Израильского технологического университета смогли создать работающий в реальном режиме биологический компьютер, где в качестве процессора используются молекулы. Т. е. будущее ИИ связано не столько с программами, сколько с прогрессом в области аппаратной части и новыми типами процессоров.
Во-вторых, полный цикл обработки информации в настоящее время осуществляется преимущественно на базе комбинаторных методов, глубокого обучения и нейронных сетей. Однако все три метода страдают тем недостатком, что успешно могут работать только с конечными задачами. Наиболее яркий пример конечной задачи – это любая игра, где наперед задано все количество возможных ситуаций и комбинаций, возникающих в ходе игры. Но следует считать, что комбинация нейронных сетей с машинным обучением в ближайшие годы будет господствующей в вычислительной технологии ИИ.
Наконец, в-третьих, тенденцией взаимодействия человек-машина в рамках ИИ является повышение уровня автономии ИИ, т. е. возложение на него частично или в полном объеме принятия решений. Это особенно ярко проявляется в военной и финансовой сфере, где счет идет на миллисекунды и соответственно вычислительная реакция превосходит человеческую.
Как уже отмечалось, в настоящее время ИИ используется, прежде всего, для распознавания образов, прогнозирования и управления сложными системами. Однако в принципе ИИ может быть ориентирован на любые задачи, которые в настоящее время решают люди. При этом необходимо оговориться, что ИИ способен подменить людей в настоящее время только в рамках имитационных, функциональных и операционных задач. Это означает, что ИИ применяется лишь тогда, когда извне ему ставится четкая задача, которая может быть выполнена в рамках наперед заданной последовательности шагов или операций. При этом сама задача носит имитационный, т. е. воспроизводимый с образца характер. Творческие задачи с созданием нового ИИ, по крайней мере на сегодняшний момент, решать не готов.
В начале XXI века за счет мощных программно-аппаратных комплексов ИИ стал распознавать изображения с 98 % точностью и делает он это лучше, чем человек, который распознает изображения с точностью до 95 %. Кроме того, впервые системы ИИ научились создавать синтетические изображения, которые практически неотличимы от оригинальных фотографий. Появилась возможность создания несуществующих личностей, которые, по крайней мере, в информационном пространстве могут жить полноценной жизнью, осуществляя с помощью чат-ботов коммуникации с людьми, информируя о своей жизни через ролики в YouTube и т. п. Согласно проведенным экспериментам, люди распознают ошибку, т. е. определяют искусственный характер изображения лишь в 3 % случаев из 100 %.
Системы ИИ добились впечатляющих результатов в конечных конкурентных играх: от шахмат до игры в го. В 2017 г. ИИ впервые победил человека в игре, где наряду с комбинаторикой требовалась рефлексия позиции, а именно – в покере. Методы ИИ в последние годы обеспечили прорыв в переводе. Другие направления задач, где осуществляется быстрый прогресс, включают в себя распознавание речи, автомобильную навигацию и прогнозирование биржевых процессов.
Успехи ИИ связаны с тремя основными факторами. Во-первых, с использованием новой высокопроизводительной элементной базы. Во-вторых, с применением новых программных решений, базирующихся на сложной комбинаторике и машинном обучении. В-третьих, с широким использованием робототехники как периферийных устройств ИИ, аналогичным периферийным устройствам человека, типа рук, ног, по отношению к мозгу.
Хотя в последние 10 лет ИИ развивался экспоненциально, вряд ли следует ожидать таких же темпов прогресса и в перспективе. Как правило, технические нововведения развиваются по гиперциклу Гартнера. При гиперцикле после долгого периода созревания наступает этап экспоненциальных перемен. В результате система достигает уровня зрелости и определенное время оказывается как бы на плато, раздвигаясь вширь, а не развиваясь вглубь. Затем наступает спад, связанный с насыщением данной технологией наиболее продвинутых пользователей. Однако спад является недолговременным и сменяется умеренным ростом, который характерен для любой зрелой технологии. Вряд ли есть основания полагать, что ИИ не будет развиваться в рамках гиперцикла. Сегодня центральной задачей ИИ является создание эффективных гибридных систем, где ИИ взаимодействует с человеком.
§ 2. ИИ, распознание угроз и оценка рисков
Магистральным направлением использования ИИ являются вопросы безопасности. При решении этой группы вопросов как в никакой другой сфере важно заблаговременно распознавать угрозы и оценивать риски. Распознавание угрозы мало чем отличается от распознавания лица. Любая угроза имеет определенный устойчивый паттерн, который может быть выражен через набор числовых характеристик. Поскольку вопросы распознавания в решающей степени зависят от скорости и полноты вычислений, то ИИ как комбинаторная машина, позволяет распознавать угрозы намного быстрее и точнее, чем человек.
Правда, есть одно важное ограничение. ИИ способен распознавать лишь те угрозы, которые имели место в прошлом. Поскольку в основе распознавания лежит машинное обучение, то фактически ИИ на числовых массивах прошлого устанавливает профиль угрозы, а потом ищет этот профиль в поступающих информационных потоках.
До сих пор остается открытым вопрос, может ли человек распознавать угрозы, которых ранее не существовало. На этот счет имеются различные точки зрения. Большинство психологов занимают точку зрения, что человек способен к этому. В то же время специалисты когнитивных наук полагают, что нет принципиальной разницы между переработкой информации у машины и человека, и соответственно, человек не может решать задачи, которые не решает машина.
Авторы доклада Центра новой американской безопасности полагают, что человек обладает способностью к решению задача, не доступных, по крайней мере, в настоящее время. Например, человек способен изменить правила игры, в то время как ИИ всегда играет по правилам. Однако применительно к новым, ранее не существовавшим угрозам, на сегодняшний день не существует однозначного ответа на вопрос: способны ли люди распознавать угрозы, с которыми до этого никогда не сталкивались.
Создание ИИ носит феноменальный характер. Существует множество различных программноаппаратных комплексов, каждый из которых уникален, а потому феноменален. В отличие от персональных компьютеров, планшетов, смартфонов и т. п. ИИ носят единичный, в крайнем случае, мелкосерийный, но отнюдь не массовый характер. Если явление не носит массового характера, то оно не может быть описано количественно. Соответственно прогноз тенденций в области ИИ – это всегда качественный прогноз.
Другое дело, что отдельные аспекты этого качественного процесса могут иметь количественное выражение, типа знаменитого закона Мура[7 - Гордон Эрл Мур (США) – почетный председатель совета директоров и основатель корпорации Intel, основоположник «закона Мура», который сводится к тому, что количество транзисторов в кристалле микропроцессора удваивается каждый год. В 1975 году он изменил временную составляющую закона и заявил об удвоении количества транзисторов каждые два года.], и тем самым служить ориентиром прогнозирования. При определении тенденции развития сложных явлений, в т. ч. ИИ, сегодня наиболее широко используют Форсайт метод, или сценарное прогнозирование. При том, что форсайт прогнозы являются сегодня абсолютно преобладающей формой составления прогнозов, разработки плановых программ на государственном уровне, включая США, страны ЕС, эффективность их крайне низка. Достаточно привести два примера. С 2003 по 2010 гг. было осуществлено на уровне федеральных органов власти США, исследовательских подразделений Федеральной резервной системы (ФРС) более 15 форсайт прогнозов дальнейшего развития глобальной финансовой системы. Ни в одном из прогнозов не нашли своего места криптовалюты и цифровые активы. Ни в одном прогнозе не были упомянуты смарт-контракты и цифровые монеты.
Это неудивительно. Во всех странах мира форсайт составляют статусные люди, которые плоть от плоти сложившейся системы. Соответственно, они видят в будущем линейное, но масштабируемое продолжение настоящего. А это принципиально не так.
В этой связи Центр новой американской безопасности предлагает использовать локусный подход к прогнозированию. Он состоит в том, что в рамках среднесрочного прогноза на горизонте три-пять лет верна мысль известного американского фантаста и мыслителя У.Гибсона: «Будущее уже наступило.
Просто оно пока неравномерно распределено». Для среднесрочных прогнозов локусный подход является не только наиболее эффективным, но и максимально дешевым и простым. Используя отработанные методы распознавания образов и обнаружения аномалий, осуществляется сканирование ноу-хау, разработок, гипотез в той области или сфере знания, применительно к которой осуществляется прогнозирование. Это позволяет выявить локусы будущего, а затем собственно прогноз сводится к тому, чтобы постараться оценить реалистично темпы экспансии этих локусов, как правило, находящихся на периферии, в ключевые сектора мировой и национальных экономик.
Тенденции всегда проявляют себя как возможности, т. е. варианты развития будущего. Практически все эмпирические исследования в области социальной динамики показывают, что у групп действия существует не один, а несколько вариантов поведения практически в любой ситуации.
Любое лицо, принимающее решение, заинтересовано в снижении риска. Собственно, ИИ и является мощнейшим инструментом подавления рисков. Однако это относится к гносеологическим рискам. Они минимизируются за счет получения дополнительной информации и ее глубокой обработки, позволяющей гораздо более достоверно, чем раньше судить о движущих силах и логике той или иной ситуации. Что же касается онтологического риска, то ИИ бессилен перед ним. В конечном счете, ИИ – это мощнейший многофункциональный вычислитель. Если же параметры, которые он вычисляет, предельно нестабильны, носят дискретный, а не непрерывный характер, находятся в состоянии, близком к белому шуму[8 - Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию. Белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области.], то даже самый мощный ИИ не сможет оказать большой помощи лицу, принимающему решения.
Использование ИИ позволяет гораздо более реалистично, чем раньше, заблаговременно определить экзистенциональные угрозы, а также позволяет в режиме мониторинга сканировать угрозы со стороны другого участника конфликта.
§ 3. ИИ как технология тройного назначения
ИИ – это технология тройного назначения. ИИ может быть использован как для гражданских, так и для военных целей. Отдельное направление использования ИИ – мафиозно-террористическое. Поскольку некоторые задачи, требующие интеллекта, являются доброкачественными с точки зрения права, а другие – нет, то ИИ обладает свойством тройного использования, также как и человеческий интеллект.
О гражданском, мирном использовании ИИ СМИ сообщают буквально каждый день. Но, откровенно говоря, самое активное использование ИИ наблюдается в военных целях.
Например, Министерство обороны США изучает множество разнообразных направлений использования ИИ. Эта работа ведется в основном в рамках DARPA (Управление перспективных исследовательских проектов Минобороны США) и IARPA (Агентство передовых исследований в сфере разведки). Разработкой стратегии использования ИИ в сфере национальной безопасности и координации исследований занимается Канцелярия помощника Министра обороны по исследованиям и инженерии, а сам помощник несет личную ответственность перед министром обороны, администрацией президента и Конгрессом за максимально эффективное использование ИИ в интересах национальной безопасности[9 - См.: Artificial Intelligence and National Security. Congressional Research Service. 26.04.2018.].
В апреле 2017 г. под руководством заместителя министра обороны США по разведке создана и начала активно работать междисциплинарная и многофункциональная команда по разработке стратегии и тактики алгоритмических войн, а также их программно-аппаратному обеспечению со стороны ИИ. Работа этой команды известна как проект Maven. Главная цель проекта Maven состоит в максимально быстром внедрении ИИ в оборонительные и наступательные системы в сфере военного, финансово-экономического и поведенческого противоборства. Проект призван продемонстрировать огромный потенциал технологий ИИ. В рамках проекта на период до 2020 г. поквартально расписаны цели и ресурсы. Информация по проекту Maven доступна комитетам Сената и палаты Представителей по разведке, т. к. относится к засекреченной сфере.
В начале 2018 г. директор проекта Maven заявил: «Maven предназначен для того, чтобы быть пилотным проектом. Он призван продемонстрировать неисчерпаемый потенциал ИИ в сфере алгоритмических войн, а конкретно кибер-, финансово-экономических и поведенческих конфликтов и противоборств, а также в сфере управления и прогнозирования конфликтов на пяти полях боя: на земле, в воздухе, в космосе, под водой и в киберсреде».
Ожидается, что к 2020 г. ИИ даст максимальный эффект в разведке для обработки и анализа больших, в том числе неструктурированных, зашумленных и неполных. Одним из результатов проекта Maven стало создание системы опережающего мониторинга и прогнозирования на основе разнообразных данных действий противника (на примере борьбы с ИГИЛ). Система Cointer-ISIL-Maven начала эксплуатироваться с июля 2017 г., она включает в себя сложный программно-аппаратный комплекс, состоящий как из периферийных систем, так и центрального ИИ. В качестве периферийных систем используются автоматизированные дроны, оснащенные системами компьютерного оптического зрения. Среди принципиально новых модулей центрального ИИ, созданного в рамках проекта, необходимо отметить гибкие модифицированные блоки нейронных сетей с машинным обучением, позволяющих распознавать нечеткую оптическую информацию на уровне более высоком, чем наблюдатели-люди.
Помимо засекреченных, у разведывательного сообщества есть несколько публично рекламируемых исследовательских проектов в области ИИ. На начало 2018 г. только в интересах ЦРУ осуществляется 137 публично финансируемых проектов, связанных с ИИ. В основном эти проекты направлены на решение таких задач, как анализ разнородной структурированной и неструктурированной разноформатной, зашумленной и неполной информации. Более 2 5 проектов связаны с использованием ИИ, в том числе в составе симбиотического интеллекта, совместно с группами экспертов для прогнозирования будущих событий, таких как террористические атаки, гражданские беспорядки, финансово-экономические, политические и военные кризисы и т. п.
IARPA в настоящее время финансирует крупнейший в истории США проект по созданию человеко-машинной платформы симбиотического (гибридного – человек + ИИ) интеллекта для распознавания слабых сигналов в информационном шуме и прогнозирования маловероятных событий. Также ИИ активно используется для разработки алгоритмов одновременного многоязычного распознавания речи и перевода акустической речи в тексты с уровнем, превосходящим применяющиеся в настоящее время системы машинного перевода.
У ИИ может быть многообещающее будущее в сфере военной логистики. Например, ВВС США работает над использованием ИИ для составления графиков обслуживания летательных средств, включая графики дозаправки в воздухе и проведения ремонта. Вместо того, чтобы осуществлять дорогостоящий ремонт, когда самолет или вертолет выходит из строя из-за поломок, ИИ разработал модели, позволяющие проводить предупредительное техническое обслуживание воздушных судов. Это повышает надежность их эксплуатации при более низких затратах. Данная система, созданная в 2017 г., включает в себя встраиваемые в воздушные суда датчики, передающие шифрованные сигналы центральному интеллекту, в котором они становятся базой для работы алгоритма прогнозирования.
В сентябре 2017 г. Управление материально-технического снабжения сухопутных войск США подписало второй контракт с IBM на сумму 135 млн. долларов для создания персонального электронного помощника бойца штурмового отряда на базе ИИ. Этот проект стал продолжением первого проекта, начатого в 2014 и завершенного в 2016 г. В рамках первого проекта электронный индивидуальный помощник-эксперт был создан для работников полевых штабов дивизий быстрого развертывания на базе IBM Watson.
ВМС США заказали в 2017 г. версию Watson, предназначенную для разработки планов оптимального материально-технического снабжения военно-морских группировок и отдельных судов, находящихся в мировом океане, и контроля над их выполнением. Командование сухопутной армии полагает, что использование логистического Watson в армии обеспечит ежегодную экономию 100 млн. долларов за счет оптимального распределения логистических потоков и планов материально-технического обеспечения вооруженных сил.
Наиболее активно ИИ будет использоваться министерством обороны США в киберпространстве.
В 2018 г. киберкомандование США разместило через DARPA заказы по использованию ИИ для мгновенного обнаружения аномалий и дыр в киберзащите. Представляется, что именно ИИ с его быстродействием позволит наиболее эффективно управлять боевыми киберплатформами на самой деликатной стадии киберпротивоборств – фазе проникновения в сети противника.
Вооруженные силы США стремятся максимально использовать ИИ в области управления и контроля. Наиболее продвинутая система создана в настоящее время в ВВС США. Сейчас она доведена до уровня штабных работников командования ВВС. В период до 2019 г. система охватит уровень авиационных полков и дивизий.
Как известно, одной из наиболее сложных в практическом плане задач является сохранение управляемости и поддержание взаимодействия командования и боевых единиц в ходе реальных военных действий, когда противник наносит удары не только на поле боя, но и по центрам командования. До настоящего времени ни в одной стране мира, насколько известно, не создана система регенерации командования и контроля в жестких конфликтах. Регенеративная система должна быть организована таким образом, чтобы после выхода из строя тех или иных узлов и уровней командования, система перестраивалась и в новой конфигурации сохраняла высокий уровень управления и координации. В настоящее время командование ВВС совместно с корпорацией Lockheed Martin и корпорацией Alphabet приступили к созданию такой системы на основе симбиотического интеллекта, используя традиционные командные центры и защищенный ИИ.
Все рода войск США в последние годы имплантируют ИИ в различные типы автономных транспортных средств. По сути, вооруженные силы ведут работу параллельно с бизнес-сектором по созданию транспортных средств с полным самообслуживанием. Военные подрядчики вооруженных сил, начиная с 2017 г. ежегодно представляют такого рода автономные транспортные средства с использованием ИИ. С 2019 г. министерство обороны запускает проект стоимостью в 430 млн. долларов по созданию систем, включающих центральный ИИ и роевые или стайные автономные транспортные средства, оснащенные датчиками и интерфейсами, позволяющими перейти от индивидуального к коллективному машинному обучению.
Исследовательская лаборатория ВВС завершила вторую фазу испытаний по программе «Недоверчивый Уитман». В рамках программы впервые создан и проходит испытания полноценный беспилотный истребитель пятого поколения. В 2017 г. тестовый вариант, реализованный на более дешевом истребителе F16, прошел испытание. В их ходе машина, оснащенная ИИ, автономно реагировала на события, которые не были включены в программу полетов и представляли собой непредвиденные препятствия и сложности для выполнения заданий. Из 17 испытательных заданий в 16, не считая самого первого, платформа справилась со всеми сложностями. Уже сегодня очевидно, что ИИ позволяет создавать полностью функциональные боевые истребители и самолеты-штурмовики, не уступающие, а по ряду параметров превосходящие такие же самолеты, пилотируемые людьми.