Пример 4.28. Магнитная подушка
Поезда на магнитной подушке левитирует за счет отталкивания одинаковых магнитных полюсов, при этом используется линейный двигатель. Его располагают или на поезде, или на пути, или там и там.
Пример 4.29. Шины автомобиля
Компания Goodyear разработала концепцию инновационных шин под названием Eagle-360, имеющих сферическую форму.
Шины прикреплены к автомобилю с помощью магнитной подвески (магнитной левитации)[43 - Goodyear Reveals Concept Tires for Autonomous Cars URL: https://corporate.goodyear.com/en-US/media/news/goodyear-reveals-concept-tires-for-autonomous-cars.html (https://corporate.goodyear.com/en-US/media/news/goodyear-reveals-concept-tires-for-autonomous-cars.html).]. В каждом колесе установлен электромотор и аккумулятор, а оставшееся пространство заполнено армированным пенопластом.
Эти шины позволяет автомобилю двигаться во всех направлениях, что способствует лучшей маневренности и парковке в городских условиях. У них значительно меньший износ, так как колесо изнашивается по всей сферической поверхности.
В колесе установлено много датчиков, которые определяют состояние дороги и погодных условий и передают эти данные другим машинам и системе управления дорожным транспортом.
Шины имеют рисунок протектора, напоминающий структуру поверхности мозгового коралла (рис. 4.5а). Эта поверхность твердеет при сухой погоде и смягчается при влажной, обеспечивая оптимальное управление автомобилем и предотвращая аквапланирование.
Рис. 4.5. Концепция шины компании Goodyear
Рис. 4.6. Концепция автомобиля со сферическими шинами[44 - URL: http://www.carbodydesign.com/gallery/2016/04/goodyears-spherical-concept-tires-for-self-driving-cars/5. (http://www.carbodydesign.com/gallery/2016/04/goodyears-spherical-concept-tires-for-self-driving-cars/5.)]
Пример 4.30. Удержание детали
Фиксация и ориентация деталей в магнитном поле. Например, винт удерживается на конце намагниченного наконечника отвертки.
Стандарт 2.4.2. Феполи
Чтобы повысить эффективность управления системой, необходимо перейти от веполя или «протофеполя» к феполю, заменив одно из веществ феррочастицами (или добавив феррочастицы) – стружку, гранулы, зерна и т. д. – и использовав магнитное или электромагнитное поле. Эффективность управления повышается с увеличением степени дробления феррочастиц, поэтому развитие феполей идет по линии «гранулы – порошок – мелкодисперсные феррочастицы». Эффективность повышается также с увеличением степени дробления вещества, в которое введены феррочастицы. Развитие здесь идет по линии «твердое вещество – зерна – порошок – жидкость»:
Пояснения.
1. Переход к феполям можно рассматривать как совместное применение двух стандартов-2.4.1 (введение ферровещества и магнитного поля) и 2.2.2 (дробление вещества).
2. Превратившись в феполь, вепольная система повторяет цикл развития веполей – но на новом уровне, так как феполи отличаются высокой управляемостью и эффективностью. Все стандарты, входящие в группу 2.4, можно считать своего рода «изотопами» нормального ряда стандартов (группы 2.1—2.3). Выделение «фепольной линии» в отдельную группу 2.4 оправдано (во всяком случае, на этом этапе развития системы стандартов) исключительным практическим значением феполей. Кроме того, «фепольный ряд» удобен как тонкий исследовательский инструмент для изучения более грубого «вепольного ряда» и прогнозирования его развития.
Пример 4.31. Терапия
К больным клеткам осуществляется селективная доставка магнитных наночастиц. Лечение осуществляется с помощью гипертермии (нагрев локальных мест), воздействуя на доставленные магнитные частицы, например, токами высокой частоты[45 - Патент США 7 731 648.].
Пример 4.32. Обработка скважины
Для повышения эффективности обработки скважины в пласт закачивают ферромагнитную жидкость с ферромагнитными частицами и поверхностно-активным веществом и воздействуют на пласт вращающимся магнитным полем[46 - Патент РФ 2 391 492.].
Стандарт 2.4.3. Магнитная жидкость
Эффективность феполей может быть повышена путем перехода к использованию магнитных жидкостей – коллоидных феррочастиц, взвешенных в керосине, силиконе или воде. Стандарт 2.4.3 можно рассматривать как предельный случай развития по стандарту 2.4.2.
Пример 4.33. Биологическая магнитная жидкость
Биологическая магнитная жидкость включает магнитную коллоидную дисперсную фазу. Она распределена по всей жидкой дисперсионной среде. Дисперсная фаза может состоять из магнитных частиц, покрытых сшитыми, биологически совместимыми полимерами.
Биологически совместимые полимеры могут быть связаны посредством ковалентных связей с биологически активными макромолекулами. Это может быть достигнуто путем ковалентного связывания иммуноглобулина с биологически совместимыми полимерами, а затем присоединения к иммуноглобулину антител с предопределенной специфичностью.
Эти антитела с помощью магнитные частицы могут быть нацелены на желаемые клетки для различных медицинских применений.
Магнитные частицы могут состоять из ядер магнетита с покрытиями кобальта или кобальта и бора. Кроме того, магнитные частицы могут быть изготовлены из кобальта и бора, причем бор находится в концентрации, достаточной для активации излучения.
Магнитный коллоид может быть образован путем включения биологически совместимого полимера в коллоид, который образуется путем восстановления магнитной металлической соли.
Коллоид преимущественно получают в многостадийном процессе для достижения очень однородных размеров частиц. Магнитный коллоид может быть также получен путем образования биологически несовместимого магнитного коллоида и медленного добавления коллоида к энергичному биологически совместимому полимеру.
Эти биологические магнитные жидкости полезны, например, при отделении раковых клеток от нормальных клеток в трансплантатах костного мозга, а также и в будущей области технологии переноса генов, а также в очистке геномного материала[47 - Патент EP 0156537 A3.],.[48 - S.Roath (https://www.sciencedirect.com/science/article/abs/pii/030488539391103E#!). Biological and biomedical aspects of magnetic fluid technology. Journal of Magnetism and Magnetic Materials (https://www.sciencedirect.com/science/journal/03048853). Volume 122, Issues 1—3 (https://www.sciencedirect.com/science/journal/03048853/122/1), April 1993, Pages 329—334. URL: https://www.sciencedirect.com/science/article/abs/pii/030488539391103E (https://www.sciencedirect.com/science/article/abs/pii/030488539391103E)]
Пример 4.34. Датчик уровня жидкости
Датчик измерения уровня жидкости, содержит корпус, выполненный в виде трубы, в котором коаксиально установлен полый стержень, образующий с корпусом герметичную полость, в которой размещена токопроводящая обмотка, расположенная на поверхности стержня и выполненная в виде одной или нескольких секций витков, причем каждая секция соединена электрически с приемником сигналов и содержит более одного витка, а поплавок установлен внутри стержня и содержит носитель, выполненный из материала с запасом плавучести относительно измеряемой среды.
Носитель имеет закрытую или открытую полость, в которой размещена магнитная жидкость.
Датчик, устанавливаемый в емкости для измерения, например, уровня нефти, работает следующим образом (рис. 4.7). В исходном положении при отсутствии в емкости нефти поплавок 6 с магнитной жидкостью 9 находится в крайнем нижнем положении. При повышении уровня нефти поплавок 6 с магнитной жидкостью 9 начинает перемещаться внутри стержня 2. Магнитная жидкость 9 попадает в магнитное поле, создаваемое измерительной обмоткой 4, намотанной на поверхность стержня 2. При этом возникает более сильное магнитное поле ориентированных частиц жидкости, которое воздействует на приемник сигналов 5, измеряя уровень жидкости в резервуаре.
Для контроля над ограничением налива жидкости в закрытый резервуар используют измерительную обмотку 4 из двух витков (или двух секций). Когда поплавок 6 доходит до уровня нижнего витка (или нижней секции), изменяя индуктивность магнитного поля, поступает предупредительный сигнал на приемник сигналов, а когда поплавок 6 дойдет до верхнего витка (или верхней секции), поступает сигнал на отключение налива жидкости[49 - Патент РФ 2 284 480.].
Рис. 4.7. Датчик
1 – корпус; 2 – полый стержень; 3 – герметичная полость; 4 – токопроводящая обмотка; 5 – приемник сигнала; 6 – поплавок; 7 – носитель; 8 – полость; 9 – магнитная жидкость.
Стандарт 2.4.4. Использование капиллярно-пористых структур в феполях
Эффективность феполей может быть повышена за счет использования капиллярно-пористой структуры, присущей многим фепольным системам.
Пример 4.35. Магнитная пена
Описываются разные варианты магнитных пен в жидком и твердом состоянии[50 - Патент РФ 2 182 579.].
Магнитная пена может существенно повысить эффективность сбора гидрофобных загрязнений с поверхности воды или твердого тела, например, для удаления тонкой нефтяной пленки с водной поверхности. Жидкая магнитная пена гидрофобна и может сохранять на воде устойчивость в течение десятков минут, в то время как процесс всасывания нефти в пену длится несколько минут. Быстрое всасывание нефти пеной дает возможность практически сразу собирать и удалять с поверхности воды пену с помощью магнитных подборщиков, а высокая скорость генерации пены – наносить пену повторно. Пена может производиться в больших количествах на месте удаления загрязнения (например, морских судах или в портах), что является особенно актуальным, поскольку в соответствии с рядом соглашений многие порты должны быть оборудованы оборудованием и устройствами для сбора разлитой нефти[51 - Патент РФ 2 182 579.].
Пример 4.36. Магнитная пена Солнца
По данным полученным от зондов Voyager 1 и Voyager 2 ученые пришли к выводу, что на границе солнечной системы имеются большие магнитные пузыри, образующие магнитную пену. Каждый пузырь имеет диаметр около 16 млн км (расстояние от Земли до Солнца).
Стандарт 2.4.5. Комплексные феполи
Если нужно повысить эффективность управления системой путем перехода к феполю, а замена веществ феррочастицами недопустима, переход осуществляют построением внутреннего или внешнего комплексного феполя, вводя добавки в одно из веществ:
Пример 4.37. Цементный раствор
Для улучшения качества цементного камня в цементный раствор вводят наноферромагнитные добавки в количестве 0, 03—0,07% и воздействуют магнитным полем[52 - Патент РФ 2 396 301.].
Пример 4.38. Химические реакции