Оценить:
 Рейтинг: 4.67

Основы ТРИЗ. Теория решения изобретательских задач. Издание 2-е, исправленное и дополненное

Год написания книги
2018
<< 1 ... 31 32 33 34 35 36 >>
На страницу:
35 из 36
Настройки чтения
Размер шрифта
Высота строк
Поля

Развитие системы идет в направлении увеличения степени управляемости.

Система может быть управляемой тогда и только тогда, когда она содержит в себе элементы, способные воспринимать управляющие сигналы, преобразовывать их в управляющие воздействия и адекватно воспринимать информацию о внутреннихизменениях в системе и внешних воздействиях на нее. Это свойство часто называют «отзывчивостью».

Общая тенденция увеличения степени управляемости (рис. 4.12) – это переход от:

– неуправляемой к управляемой системе;

– неавтоматического (ручного) управления к автоматическому;

– проводногоуправления к беспроводному;

– непосредственного управления к дистанционному.

Рис. 4.12. Общая тенденция увеличения степени управляемости

Увеличение степени управляемости уменьшает степень участия человека в работе технической системы. Иногда эту тенденцию называют вытеснение человека из технической системы.

Вытеснение осуществлялось на протяжении всей истории развития человечества.

Первоначально вытеснение осуществлялось на уровне рабочего органа – руки и ногти были заменены острым камнем или рогом, которым первобытный человек, например, обрабатывал землю. На следующем этапе заменяли и некоторые связи или преобразователи – камень привязали к палке. Далее постепенно происходили этапы механизации, автоматизации и, начиная с 20 века, этап кибернетизации.

Этап механизации начинался с примитивных приспособлений, затем вытеснения человека на уровне двигателя – человек воспользовался природными силами (ветром, силой падающей воды и т. д.) и животными в качестве двигателя.

Следующий этап развития – замена человека на уровне системы управления. Этот этап начинался с примитивных, а затем сложнейших механических автоматов, далее автоматика была электромеханическая, электрическая и электронная.

Этап кибернетизации и интеллектуализации характерен для сегодняшнего дня.

Примеры к этим этапам мы рассматривали в разделе 4.5.2 (степени идеализации):

Система все делает сама – самоисполнение (рис. 4.13):

– механизация;

– автоматизация;

– кибернетизация (интеллектуализация).

Рис. 4.13. Уменьшение участия человека в работе технической системы

Пример 4.47. Зонтик

Родиной зонтика исторически считают Китай, Египет или Индию, где он, являлся привилегией царей и вельмож. Изобретение датируется XI веком до нашей эры. Первоначально он применялся исключительно в качестве защиты от солнца, и весил более 2 кг, а длина ручки была около 1,5 м.

Первые зонты имели недостаток – они не были складными, т. е. имели только одно устойчивое состояние – открытое. Соответственно, это была неуправляемая система – независимо от наличия дождя или прямых солнечных лучей зонтик сохранял свои внушительные размеры.

Автоматическое управление в технике – это совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта без непосредственного участия человека в соответствии с заданной целью управления.

Тенденция перехода от неуправляемой к управляемой системе показана на рис. 4.14. Она представляет собой переход от неуправляемой системы к управлению по разомкнутому контуру, затем к переходу к системе с обратной связью, к адаптивной (самонастраивающейся) системе, к самообучаемой и самоорганизующейся системе и, наконец, к саморазвивающейся и самовоспроизводящейся системе.

Рис. 4.14. Переход от неуправляемой к управляемой системе

Управление по разомкнутому контуру осуществляется без знаний о текущем состоянии объекта управления. При таком управлении чаще всего управление ведется по жесткой программе, без анализа каких-либо факторов в процессе работы, либо измеряют и компенсируют главные из возмущений.

Для этого вида управления характерно отсутствие обратной связи, с помощью которой можно получить информацию о том, что происходит в объекте управления.

Структурная схема системы управления по разомкнутому контуру показана на рис. 4.15. Устройство управления воздействует на объект управления по программе, находящейся в задающем устройстве. На объект управления могут воздействовать возмущения. Некоторые системы по разомкнутому контуру измеряют главные из возмущений и компенсируются.

Рис. 4.15. Система управления по разомкнутому контуру

Этот вид управления достаточно примитивен, но часто исполнительные устройства просты, надежны и дешевы. По такому принципу работают примитивные автоматы и конвейерные линии.

Условия предпочтенияуправления по разомкнутому контуру управлению по замкнутому контуру:

– не нужны высокоточные операции;

– система может работать удовлетворительно без гарантии изменений, которые происходят в объекте управления.

Пример 4.48. Стиральная машина

Переключение команд в стиральной машине осуществляется по определенной программе.

Система с обратной связью представляет собой систему, работающую по замкнутому контуру. В такой системе осуществляется регулирование по отклонению, а цепь прохождения сигналов образует замкнутый контур, включающий объект управления и управляющее устройство.

Структурная схема системы управления с обратной связью показана на рис. 4.16. Устройство управления воздействует на объект управления посредством сигнала (управляющего воздействия) в соответствие с ошибкой управления, которая вырабатывается в результате сравнения сигнала обратной связи с задающим воздействием. На объект управления могут воздействовать возмущения.

Рис. 4.16. Система управления с обратной связью, где кружок с крестиком – сумматор

Обратная связь – это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. На вход системы подается сигнал, являющийся функцией выходного сигнала. Часто это делается преднамеренно, чтобы повлиять на динамику функционирования системы.

Различают положительную и отрицательную обратную связь.

Отрицательная обратная связь – это тип обратной связи, при которой входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала. Отрицательная обратная связь компенсирует отклонения управляемой величины от желаемых значений вне зависимости от причин, вызвавших эти отклонения. Таким образом, на вход системы подается инвертируемый выходной сигнал, сигналы вычитаются, уменьшая ошибку управления.

Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.

На рис. 4.17 затемненная часть сумматора обозначает, что он является инвертором (сигнал вычитается).

Рис. 4.17. Система управления с отрицательной обратной связью

Примером отрицательной обратной связи является любая система автоматического управления и регулирования, следящая система.

Пример 4.49. Инвертор

Простейший пример отрицательной обратной связи – это инвертор или инвертирующий усилитель (рис. 4.18). Он выполнен на операционном усилителе (ОУ). Обратная связь подается через сопротивление R3 на инвертирующий вход (он обозначается кружочком), при этом фаза выходного сигнала сдвигается относительно входного на 180?. Поэтому обратная связь отрицательная.

Рис. 4.18. Схема инвертора (инвертирующего усилителя) ОУ – операционный усилитель, R1, R2, R3 – сопротивления.

Эффективность управления повышается, если управление осуществляется не только по управляемой величине, но и по ее производным и интегралу.
<< 1 ... 31 32 33 34 35 36 >>
На страницу:
35 из 36