Оценить:
 Рейтинг: 0

Законы и закономерности развития систем. Книга 4

Год написания книги
2020
<< 1 2 3 4 5 6 7 8 9 ... 15 >>
На страницу:
5 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля

Пример 22.21. Самоорганизующийся робот

В лаборатории вычислительного синтеза Корнельского университета (США) разработали опытный образец робота (рис. 22.28), способного синтезировать свою структуру в зависимости от окружающих его условий и обстоятельств и воспроизвести себя из универсальных элементов – кубиков (рис. 22.28а).

На поверхности кубиков имеются электромагниты, с помощью которых они могут соединяться и разъединяться друг с другом; питание подводится через контакты на поверхности монтажного стола.

Каждый куб разделен пополам по диагонали на две части, которые способны вращаться относительно друг друга. При этом робот, составленный из множества кубиков, воспроизводит сам себя. Так, трехмодульный робот способен воспроизвести себя в течение одной минуты.

Процесс происходит так. Робот изгибается, ставит свой собственный куб на стол и надстраивает его новым кубом, который подают люди. При этом новый робот помогает в комплектации его собственной конструкции.

Рис. 22.28.Самоорганизующийся робот

Первоначально робот создает свою модель и по ней синтезирует систему управления, что осуществляется в результате ограниченного количества физических экспериментов (это поисковая самонастраивающаяся система).

Алгоритм работы робота позволяет ему функционально компенсировать механические повреждения в результате коррекции собственной модели.

Саморазвивающаяся система – это самообучающаяся система, способная не только накапливать знания, но и развивать себя в соответствии с поставленными целями.

Пример 22.22. Саморазвивающаяся компьютерная система

В патенте США 5 072 406 описана саморазвивающаяся компьютерная система, память которой содержит блоки инструкций, специальных знаний и базовых данных. Блок специальных знаний включают знания конкретной области и стратегию их использования. Блок базовых данных включает знания по использованию инструкций.

При поступлении входного сигнала он обрабатывается и перепроверяется по всем блокам с учетом имеющихся инструкций и базовых данных, вырабатывая выходной сигнал. При выявлении новых знаний они заносятся в блок специальных знаний. В процессе деятельности блок специальных знаний может изменять инструкции, постоянно развивая компьютерную систему.

Пример 22.23. Саморазвивающийся робот

В швейцарском университете Чалмер (Chalmers) создали робот HR-2 (рис. 22.29). Он обладает 22 степенями свободы, что позволяет ему легко перемещаться и копировать движения человека. Робот имеет объемное зрение, делая возможным координировать движения рук. Он повторяет показанные ему движения рук. Искусственный мозг обладает развитой нейронной сетью. Робот способен различать лица людей и говорить. Он самообучается и саморазвивается.

Рис. 22.29. Саморазвивающийся робот HR-2

Самовоспроизводящаяся система – это самоорганизующаяся, саморазвивающаяся система, способная создать подобную себе систему.

Основное отличие самовоспроизводящейся системы от самоорганизующейся заключается в том, что в первой используются готовые подсистемы, а во второй – их изготовляет сама система.

Самовоспроизводящиеся системы, прежде всего, характерны для живых организмов. Клетка сама себя воспроизводит. Не малую роль в этом играют стволовые клетки.

Пример 22.24. Стволовая клетка

Стволовые клетки – это особые клетки живых организмов (клетки-родоначальницы), каждая из которых способна впоследствии изменяться (дифференцироваться[6 - Дифференцировка клеток – процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Фенотип клеток есть результат координированной согласованной функциональной активности определенного набора генов.]) особым образом (т. е. получать специализацию и далее развиваться как обычная клетка). Стволовые клетки могут давать начало любым клеткам организма: кожным, нервным, клеткам крови и т. д.

Они способны асимметрично делиться, из-за чего при делении образуется клетка, подобная материнской (самовоспроизведение), а также новая клетка, которая способна дифференцироваться.

Иерархия стволовых клеток показана на рис. 22.30.

Рис. 22.30. Иерархия стволовых клеток

Пример 22.25. Самовоспроизводящаяся машина

Доктор Adrian Bowyer из университета Ванны в Великобритании разработал машину RedRap (Replicating Rapid-prototyper), которая 29 мая 2008 г. в 14:00 воспроизвела свою копию (рис. 22.31). Пластмассовые детали для этой машины изготовлялись на 3D-принтере, встроенном в машину.

Рис. 22.31. Самовоспроизводящаяся машина (слева) и ее копия (справа)

22.3. Уменьшение степени управляемости

Закономерность уменьшения степени управляемости указывает на тенденцию создания простых приспособлений без механизации и автоматизации. Эта закономерность противоположена закону увеличения степени управляемости.

Пример 22.26. Инструмент для очистки апельсинов

Он представляет собой только одну деталь, отлитую из пластмассы (рис. 22.32). Инструмент одевается на палец. Полукруглая форма инструмента позволяет легко скользить по поверхности апельсина, а размер и форма ножа легко надрезает кожуру и не портит сердцевину. На конце сделана лопатка, помогающая приподнимать кожицу. Это очень простой, удобный и малогабаритный инструмент. Такого типа инструменты появлялись и в прошлом, например, различные приспособления для открывания консервов и бутылок. Они будут изобретаться и в будущем.

Рис. 22.32. Инструмент для очистки апельсинов

22.4. Закон увеличения степени динамичности

Развитие системы идет в направлении увеличения степени динамичности.

Динамичная система может изменять свои параметры, структуру (в частности форму), алгоритм, принцип действия и функции, чтобы наиболее эффективно достичь поставленную цель и удовлетворить потребность. Динамическая система в своем развитии может менять так же цель и потребность, приспосабливаясь к внешним и внутренним изменениям.

Изменения могут происходит:

– во времени;

– по условию.

Следствия из закона.

1. Статические системы стремятся стать динамическими.

2. Системы развиваются в сторону увеличения степени динамичности.

Пример 2.27. Катамаран

Парусные катамараны – суда с двумя корпусами, что повышает их устойчивость по сравнению с обычными однокорпусными яхтами.

Для увеличения маневренности расстояние между корпусами должно быть, как можно меньше, но это уменьшает остойчивость катамарана при большой волне.

Во время спокойной погоды корпуса катамарана должны быть на небольшом расстоянии, а при шторме – на большом расстоянии.

Корпуса должны иметь возможность раздвигаться и сдвигаться, – быть динамичным – изменяться в зависимости от состояния моря (штиль или волнение).

Соединение между корпусами сделали подвижное, которое может быть отрегулировано в зависимости от увеличенной маневренности (рис. 22.33).

Это пример изменения структуры по условию (высота волны). Статическая система стала динамической.

Рис. 22.33. Катамаран

Приведем пример на увеличения степени динамичности.

Пример 22.27. Электронная книга
<< 1 2 3 4 5 6 7 8 9 ... 15 >>
На страницу:
5 из 15