Оценить:
 Рейтинг: 0

Технические средства обеспечения транспортной безопасности. Детекторы паров и следов взрывчатых и наркотических веществ

<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля

1.3. ПРИНЦИП РАБОТЫ

1.3.1. Метод анализа

ИДД «КЕРБЕР» работает по методу спектрометрии ионной подвижности (СИП). Метод СИП (рис. 3) основан на разделении ионов веществ по их подвижности во время движения в дрейфовой камере в постоянном электрическом поле.

Детектор, работающий в режиме поиска целевых веществ, непрерывно забирает воздух, окружающий инспектируемый объект, со скоростью 5—10 см

/с. Забранный воздух, содержащий молекулы целевых веществ, попадает в источник ионизации на основе импульсного коронного разряда, где молекулы частично ионизируются.

Рисунок 3. Метод СИП

Процесс ионизации молекул исследуемого вещества происходит в несколько этапов. При работе прибора в разрядной камере образуются положительно и отрицательно заряженные ионы окружающего воздуха (реактант-ионы), концентрация которых существенно превышает концентрацию детектируемых веществ. При попадании в прибор целевых веществ реактант-ионы передают их молекулам заряд по механизму химической ионизации при атмосферном давлении.

Неионизированные молекулы целевых веществ и воздуха удаляются из системы, а полученные ионы удерживаются в камере ионизации с помощью ионного затвора. Через определенные промежутки времени ионный затвор открывается, и порция ионов попадает в камеру дрейфа с градиентом электрического поля Е (В/см).

Ионизированные молекулы разных веществ имеют разную скорость движения в дрейфовой камере vd в зависимости от их заряда, массы и размера. Ионы с небольшой массой приходят раньше, ионы с большой массой двигаются медленнее и прибывают к коллектору позже. Молекулярные ионы разных соединений отличаются временем прибытия к коллектору, что позволяет определить их природу.

Это время пропорционально длине дрейфовой камеры L (см) и обратно пропорционально градиенту электрического поля Е:

t

= (1/K) (L/E)

где К – коэффициент подвижности, имеющий размерность см

В

с

.

Это соотношение носит статистический характер, т.е. верно только для скопления ионов, но не для индивидуальных ионов.

Ионная подвижность зависит от температуры и давления. Для того, чтобы можно было сравнивать значения ионной подвижности, полученные в разных условиях, значения К приводят к нормальным условиям:

K

= K (P/760) (273/T)

где Т – температура (Кельвин) и Р – давление (мм рт. ст.) в газовой атмосфере, в которой движутся ионы. Ко называется приведенной подвижностью (или приведенным коэффициентом подвижности).

Разделенные ионы попадают на коллектор ионного тока, сигналы с которого поступают на специальную систему усиления и обработки.

Рабочая частота ионного источника —10 Гц, то есть каждую секунду система генерирует 10 спектров. Результаты непрерывно усредняются. При этом устраняются статистические выбросы, связанные со случайными флуктуациями состава газового потока и электрическими шумами. Результаты усреднения дополнительно сглаживаются и могут быть представлены в виде «спектра» ионной подвижности (ионограммы) (рис.4). На этой кривой зависимости ионного тока от времени дрейфа имеются пики, соответствующие ионам с разной подвижностью.

Рисунок 4. Спектр ионной подвижности

Программное обеспечение детектора позволяет анализировать полученный спектр на предмет наличия пиков, по математическому ожиданию и дисперсии времени дрейфа соответствующих целевым веществам, занесённым в базу данных.

Если целевое органическое соединение найдено, и его пик превышает установленный порог срабатывания, детектор производит сигнал тревоги, мигает красный сигнальный светодиод, на дисплее высвечивается надпись «Тревога» и маркер (код) обнаруженного вещества.

ИДД «КЕРБЕР» имеет комбинированный пробозаборник, позволяющий осуществлять как забор воздуха с содержащимися в нем парами и взвешенными частицами веществ, так и забор частиц, собранных на специальной пробоотборной салфетке.

1.3.2. Отбор паров

При работе в режиме детектирования паров или взвешенных в воздухе частиц целевых веществ, входной канал, по которому подаётся проба в источник ионизации, связан непосредственно с воздухозаборным отверстием на носике прибора (рис. 5). Таким образом, анализируемая проба представляет собой окружающий воздух и содержащиеся в нем примеси.

Рисунок 5. Отбор паров

1.3.3. Отбор частиц с пробоотборной салфетки

При работе детектора в режиме детектирования частиц (рис. 6) на салфетке входной канал источника ионизации ограничен отверстием в нагревателе, в который помещается салфетка. Салфетка, представляющая собой прямоугольник из алюминиевой фольги толщиной 9—15 мкм (ГОСТ 745—2003), имеет высокий коэффициент теплопроводности и, будучи помещенной в нагреватель с температурой около 200°С, быстро (порядка 1—3 сек) нагревается.

Рисунок 6. Отбор частиц

Содержащиеся на ней частицы малолетучих органических веществ начинают испаряться и попадают во входной канал детектора.

1.4. ОБЩИЙ ВИД И ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ИДД «КЕРБЕР»

1.4.1. Общий вид детектора

Общий вид детектора представлен на рис. 7.

Рисунок 7. Общий вид

1.4.2. Элементы управления и индикации

Элементы управления и индикации ионно-дрейфового детектора «Кербер» представлены на рис.8.

Рисунок 8. Элементы управления и индикации

1.4.3. Разъёмы внешних устройств

Разъемы для подключения внешних устройств представлены на рис. 9.

Рисунок 9. Разъемы внешних устройств

1.4.4. Маркирование и пломбирование

На каждый ИДД «КЕРБЕР» нанесена маркировка с указанием наименования, порядкового номера по системе нумерации предприятия-изготовителя, год изготовления (рис. 10).

Рисунок 10. Маркировка

Моноблок ИДД КЕРБЕР пломбируется предприятием-изготовителем с использованием гарантийных наклеек, размещённых в местах сочленения деталей корпуса (рис. 11).

Рисунок 11. Пломбирование

1.5. Использование по назначению
<< 1 2 3 >>
На страницу:
2 из 3