2-40. В фигуре, изображенной на рисунке к задаче 37:
а) переложите 5 спичек так, чтобы получилось всего 2 квадрата;
б) переложите 3 спички так, чтобы получилось 5 квадратов.
2-41. Из спичек сложите правильный шестиугольник и докажите с помощью дополнительного построения и путём рассуждений правильность построения.
2-42. В фигуре, показанной на рисунке:
а) переложите 3 спички так, чтобы вместо фигуры из 6 равносторонних треугольников получилась фигура их 6 равных четырёхугольников;
б) переложите 3 спички так, чтобы получилось 7 четырёхугольников, но на этот раз они могут быть не равные.
2-43. В фигуре, изображенной на рисунке:
а) переложите 3 спички так, чтобы получилось 3 равных квадрата;
б) переложите 4 спички так, чтобы получилось 3 равных квадрата;
в) переложите 4 спички так, чтобы получилось 2 квадрата;
г) уберите 2 спички так, чтобы осталось 2 квадрата;
д) переложите 2 спички так, чтобы образовалось 7 квадратов (допускается наложение одной спички поперек другой);
е) переложите 4 спички так, чтобы получилось 10 квадратов;
ж) добавьте к исходной фигуре ещё 4 спички так, чтобы квадратов стало 9;
з) расположите те же 12 спичек (все спички должны лежать в плоскости стола) так, чтобы они ограничивали 5 квадратов, причём каждый квадрат должен быть пуст, в противном случае квадраты, изображенные на рисунке, могли бы служить решением, поскольку в качестве пятого мы могли бы считать большой квадрат. Не разрешается ни укладывать две спички одна на другую, ни оставлять свободные концы.
2-44. Спички расположены, как показано на рисунке. Переложите 2 спички так, чтобы получилось 5 равных квадратов.
2-45. В фигуре, изображенной на рисунке:
а) снимите 3 спички так, чтобы получилось 3 равных квадрата;
б) переложите 4 спички так, чтобы получилось 3 не равных квадрата;
в) выложите из пяти малых квадратов три, переложив не более 10 спичек.
2-46. Из 16 спичек сложено 5 квадратов. Переложите 2 спички так, чтобы число квадратов уменьшилось на один.
2-47. В пяти квадратах нужно переложить 4 спички так, чтобы получилось 4 квадрата равной величины.
2-48. Передвинув только 2 спички, постройте 4 одинаковых по размеру квадрата.
2-49. Уберите как можно меньше спичек так, чтобы оставшиеся спички образовали 4 равносторонних треугольника, таких же размеров, как и 8 треугольников в исходной конфигурации, и нигде не торчали свободные концы.
2-50. Уберите 5 спичек так, чтобы осталось только 3 квадрата.
2-51. Уберите 2 спички так, чтобы осталось только 4 квадрата.
2-52. Из 18 спичек, составляющих 6 равных квадратов, отнимите 2 спички так, чтобы осталось 4 таких же квадрата.
2-53. Из 18 спичек составьте:
а) пять квадратов;
б) один треугольник и 6 четырёхугольников по 3 двух разных размеров.
2-54. Из 18 спичек составьте шесть равных четырёхугольников и один треугольник, в два раза меньший по площади.
2-55. В фигуре, изображенной на рисунке:
а) убрать 5 спичек так, чтобы осталось 5 треугольников (два решения);
б) переложить 6 спичек так, чтобы получилась фигура, составленная из 6 симметрично расположенных равных четырёхугольников.
2-56. Переложите 7 спичек так, чтобы получилось 4 квадрата.
2-57. От 7 квадратов, которые образуют крест и составлены из 22 спичек, отнимите 6 спичек так, чтобы осталось 4 таких же одинаковых квадрата.
2-58. В изображенной фигуре, переложите 2 спички так, чтобы получилось 7 равных квадратов; затем, из полученной фигуры, уберите 2 спички так, чтобы осталось 5 квадратов.
2-59. В фигуре, состоящей из 22 спичек:
а) убрать 4 спички так, чтобы образовалось 5 равных или 5 неравных квадратов;
б) убрать 6 спичек так, чтобы осталось 4 равных квадрата;
в) убрать 7 спичек так, чтобы осталось 4 равных квадрата.
2-60. Представьте себе, что на рисунке изображен остров, окруженный каналом. Ширина канала как раз равна длине одной спички, так что перебросить мостик через канал с помощью одной спички нельзя: невозможно опереться концами о берег канала. Попробуйте построить мост через канал с помощью 2 спичек, не склеивая и не связывая их концы.
2-61. Уберите 4 спички так, чтобы оставшиеся спички образовали 5 квадратов, причём квадраты могут быть и не одинаковой величины.
2-62. Уберите 3 спички так, чтобы оставшиеся образовывали 5 одинаковых квадратов.
2-63. Переложите 16 спичек так, чтобы образовалось 4 маленьких квадрата в одном большом.
2-64. Из 24 спичек сложена фигура, для которой придумано много задач:
а) переложите 12 спичек так, чтобы образовалось 2 равных квадрата;
б) уберите 3 спички так, чтобы осталось 7 равных квадратов;
в) уберите 4 спички так, чтобы оставшиеся образовали один большой и 4 маленьких квадрата;