Оценить:
 Рейтинг: 4.6

Справочник автолюбителя

Год написания книги
2007
Теги
<< 1 ... 4 5 6 7 8 9 10 11 12 >>
На страницу:
8 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля
В качестве стартера применяют электродвигатели постоянного тока последовательного возбуждения. Реже применяют стартеры со смешанным возбуждением (для двигателей некоторых легковых автомобилей). Это делается с целью снизить частоту вращения якоря стартера на холостом ходу.

С ростом тока, потребляемого стартером, его крутящий момент растет, а частота вращения якоря уменьшается. Кривая мощности стартера имеет вид параболы. Максимум КПД стартера и максимум мощности не совпадают. Якорь стартера при холостом ходе будет иметь максимальную частоту вращения. Крутящий момент стартера в этот момент будет равен нулю. При снижении напряжения аккумуляторной батареи снижается частота вращения якоря стартера и его мощность.

Чтобы пустить двигатель, стартер должен преодолеть его момент сопротивления, который представляет собой сумму моментов: момента сил трения, момента от сжатия, момента для привода вспомогательных механизмов, установленных на двигателе (воздушный компрессор, масляный насос, топливный насос на дизелях и т. д.), а также момента на преодоление сил инерции вращающихся и поступательно движущихся масс двигателя.

Для всех двигателей характерно увеличение минимальной пусковой частоты вращения с понижением температуры пуска. Чем больше число цилиндров, тем ниже пусковая частота вращения двигателя. У дизельных двигателей пусковая частота вращения значительно выше, чем у карбюраторных двигателей.

Применение пусковых жидкостей (вводимых во всасывающий коллектор) значительно снижает минимальную пусковую частоту вращения и облегчает пуск холодных двигателей. Для пуска двигателя необходимо не только сообщить коленчатому валу скорость, превышающую минимальную пусковую, но и повернуть вал определенное число раз (2–3), чтобы в цилиндрах двигателя образовалась рабочая смесь, которую может воспламенить искра.

Если совместить механическую характеристику двигателя (зависимость момента сопротивления от частоты прокручивания) и механическую характеристику стартера, то точка их пересечения определит частоту, с которой будет прокручиваться вал двигателя при пуске. Чем ниже температура двигателя, тем больше момент сопротивления двигателя прокручиванию и хуже механическая характеристика стартера за счет снижения температуры аккумуляторной батареи, а следовательно, и меньше частота прокручивания вала двигателя при его пуске.

Стартер (рис. 3.2.13) состоит из корпуса 15, якоря 16, крышек 9 (со стороны привода) и 19 (со стороны коллектора), привода стартера, включающего муфту свободного хода 12, шестерню 77 и поводковую муфту 14. На корпусе стартера укреплено тяговое реле.

Корпус стартера изготовляют из стали. Он может быть сварным или выполненным из цельнотянутой трубы. Полюсы 21 получают горячей штамповкой из стали. Крышка 9 отливается из чугуна или алюминиевого сплава. Крышка 19 отливается из алюминиевого сплава. На задней крышке укреплены щеткодержатели 23 коробчатого типа. На стартерах большой мощности применяют щеткодержатели, в которых устанавливают по две щетки в один ряд.

Обмотка возбуждения 20 изготовляется из медной шины с небольшим числом витков. В небольших стартерах обмотки возбуждения включаются последовательно, в стартерах средней и большой мощности – параллельно-последовательно.

Рис. 3.2.13.Стартер и его электрическая схема:

1 – контакты тягового реле, 2 – контакт замыкания добавочного резистора катушки зажигания, 3 – обмотки тягового реле, 4 – якорь тягового реле, 5 – регулировочный винт-тяга, 6 – защитный кожух рычага, 7 – рычаг, 8 – винт регулировки хода шестерни, 9 – крышка стартера со стороны привода, 10 – упорное кольцо, 11 – шестерня привода, 12 – муфта свободного хода, 13 – пружина, 14 — поводковая муфта привода, 15 – корпус стартера, 16 – якорь стартера, 77– стяжная шпилька, 18 – коллектор, 19 — крышка стартера со стороны коллектора, 20 – обмотка возбуждения, 21 – полюс, 22 – щетки, 23 – щеткодержатель, 24 – пружина щеткодержателя, 25 – привод щетки; выводы тягового реле стартера: КЗ — к катушке зажигания, АБ — к аккумуляторной батарее, PC — к реле стартера

В этом случае сопротивление четырех катушек (на четырех полюсах) будет равно сопротивлению одной катушки. Якорь стартера набран из пластин электротехнической стали с целью снижения его нагрева вихревыми токами.

При пуске двигателя якорь 4 тягового реле, втягиваясь магнитным полем обмоток 3, перемещает рычаг 7 и связанную с ним муфту 14 привода. При этом шестерня 11 привода стартера входит в зацепление с венцом маховика двигателя. Подвижный контакт 2 тягового реле замыкает цепь аккумуляторная батарея – стартер, и якорь стартера начинает вращаться. Если шестерня 77 не вошла в зацепление с венцом маховика (так называемое «утыкание» шестерни стартера в зубцы венца маховика), то рычаг 7 все равно будет перемещаться, сжимая пружину 13. Как только якорь начнет вращаться, шестерня 77 повернется и под действием пружины 13 ее зубья войдут во впадины между зубьями венца.

В случае, если двигатель завелся, а шестерня привода не вышла из зацепления с венцом маховика, срабатывает муфта свободного хода 12, и вращение от маховика двигателя не передается на якорь, что предохраняет его от «разноса».

Муфта свободного хода (рис. 3.2.14, а) роликового типа может перемещаться по спиральным шлицам вала стартера. На втулке 7, имеющей внутренние шлицы, укреплена обойма 8. В ней имеются четыре клиновидных паза, в которых установлены ролики 10, ролики отжимаются в сторону узкой части паза плунжером 13 с пружиной 14. Шестерня 12 выполнена заодно со ступицей 77.

При включении стартера крутящий момент от втулки 7 передается роликами 10 на ступицу 77 шестерни. В этом случае ролики заклинены (рис. 3.2.14, б) между ступицей 77 шестерни и обоймой 8. Как только двигатель будет запущен, ступица 77 шестерни станет ведомой (ведущим будет зубчатый венец маховика), ролики 10 расклиниваются и муфта начинает пробуксовывать. На рис. 3.2.14, г показана конструкция бесплунжерной муфты свободного хода, применяемой на некоторых типах стартеров. Бесплунжерная конструкция обеспечивает более надежную работу муфты.

В стартерах большой мощности муфты свободного хода не применяют, так как в этих условиях они работают ненадежно.

На рис. 3.2.15 изображены механизмы привода стартеров дизельных двигателей.

Рис. 3.2.14. Муфта свободного хода:

а, г – конструкция муфты, б — ролик заклинен, муфта передает момент, в – ролик вращается, муфта пробуксовывает; 1 — втулка привода, 2, 6 – замочные кольца, 3 – опорное кольцо, 4 – пружина, 5 – поводковая муфта, 7 – буферная пружина, 8 – обойма, 9 – кожух, 10 – ролик, 11 — ступица, 12 – шестерня, 13 – плунжер, 14 — пружина плунжера, 15 — толкатель, 16 — пружина толкателя, 17 — держатель пружин

На стартере СТ-142 применен храповичный механизм привода (рис. 3.2.15, а). Детали привода расположены на направляющей втулке 1, имеющей прямые внутренние шлицы и многозаходную ленточную наружную резьбу. Втулка вместе с приводом может перемещаться по шлицам вала стартера. На наружной резьбе втулки 1 расположена ведущая полумуфта 8. Ведомая полумуфта 13 выполнена как одно целое с шестерней и может свободно вращаться на втулке 1 в бронзовых графитированных подшипниках. Торцы полумуфт снабжены зубцами и прижимаются один к другому пружиной 7. Ведомая полумуфта 13 заперта в корпусе 5 замковым кольцом 10. Замковое кольцо 2 удерживает корпус 5 от перемещения на втулке 1. Для амортизации ударов при включении стартера под пружиной 7 размещены стальная шайба 6 и кольцо 4.

Рис. 3.2.15. Типы приводов стартеров для дизельных двигателей:

а – разрез, б – общий вид привода с храповой муфтой стартера СТ-142, в – привод стартера СТ-103;

1 – направляющая втулка, 2, 10 — замковые кольца, 3 – втулка отводки (выполнена за одно целое с корпусом), 4 — резиновое кольцо,

5 – корпус, 6 — стальная шайба, 7 – пружина, 8 — ведущая полумуфта,

9 – конусное кольцо, 11 — штифт, 12 – сухарь, 13 — ведомая полумуфта, 14 — вал якоря, 15 – стакан, 16 — рычаг, 17 — буферная пружина,

18 – гайка, 19 — шестерня, 20 – упорное кольцо, 21 – спиральный паз

Для предотвращения износа зубьев храповой муфты и снижения шума в момент, когда двигатель пущен и стартер еще не выключен, предусмотрен механизм блокировки.

Внутри ведомой полумуфты 13 находятся три пластмассовых сухаря 12 с радиальными отверстиями, в которые входят направляющие штифты 77. Наружная поверхность сухарей имеет коническую фаску, прилегающую к выточке стального кольца 9, установленного в ведущей полумуфте 8. Кольцо 9 прижимает сухари 12 к направляющей втулке 1. При передаче крутящего момента к венцу маховика двигателя возникает осевое усилие, прижимающее ведущую полумуфту к ведомой. Как только двигатель будет пущен, произойдет пробуксовка храповой муфты. Во время пробуксовки ведущая полумуфта 8 отодвигается от ведомой полумуфты 13, сжимая пружину 7. Вместе с ведущей полумуфтой 8 отодвигается кольцо 9, освобождая сухари 12, которые под действием центробежных сил перемещаются вдоль штифтов 77 и блокируют муфту в расцепленном состоянии. После выключения стартера ведущая полумуфта 8 под действием пружины 7 прижмется к ведомой полумуфте 13 и кольцо 9 установит сухари 12 в исходное положение.

При упоре шестерни стартера в зубья венца маховика корпус 5 привода вместе с направляющей втулкой 7 продолжает перемещаться вдоль шлицев вала стартера, сжимая пружину 7. При этом ленточная резьба втулки 7 заставляет поворачиваться ведущую полумуфту 8 и шестерню стартера (до 30°), что обеспечивает ее зацепление с венцом маховика. Храповичный привод допускает до 5 % упоров шестерни стартера в венец маховика от общего числа включений.

Достоинством описанного привода является то, что при отдельных вспышках в цилиндрах двигателя муфта не выходит из зацепления, тем самым обеспечивая надежность пуска холодного двигателя.

Стартер СТ-103 для дизельных двигателей имеет конструкцию приводного механизма, изображенную на рис. 3.2.15, б. На спиральных шлицах вала 14 якоря стартера установлены гайка 18 и шестерня 19. Между гайкой и хвостовиком шестерни помещена пружина 7. На вал якоря свободно надет стакан, имеющий спиральный паз 21. На опорной втулке стакана размещены буферная пружина 7 7 и шайба 6.

Ход шестерни на валу ограничивает упорное кольцо 20. При включении стартера тяговое реле, действуя на рычаг, перемещает ведущую гайку 18 вместе с шестерней до упорного кольца 20. Если происходит упор зубьев шестерни в венец маховика, то ведущая гайка 18 сжимает пружину 7 и поворачивает шестерню 19, так как шлицевые пазы в шестерне шире шлицев вала.

В первый момент пуска двигателя стакан 75 повертывается благодаря трению и по спиральному пазу 21 отводится назад в исходное положение, освобождая место для отхода шестерни. Как только двигатель будет пущен, венец маховика начнет вращать шестерню стартера, и она по спиральным шлицам отойдет в первоначальное положение.

При наличии на стартере тягового реле он включается подключением обмоток тягового реле к аккумуляторной батарее. Это подключение на автомобилях с дизельными двигателями осуществляют с помощью выключателя стартера, контакты которого рассчитаны на ток, потребляемый тяговым реле. На автомобилях с карбюраторными двигателями, у которых мощность стартера значительно ниже, тяговое реле включается через выключатель зажигания. Однако контакты выключателя зажигания не рассчитаны на силу тока, потребляемую тяговым реле в момент включения (30–40 А), поэтому приходится ставить реле стартера, контакты которого включают обмотки тягового реле, а обмотки реле стартера включаются через выключатель зажигания.

В системах электрооборудования с генератором переменного тока блокировка стартера может быть осуществлена с помощью специального реле блокировки или применением сложной электронной схемы.

При повороте вправо ключа в выключателе зажигания появляется ток в обмотке реле стартера и замыкаются его контакты, включая ток в обмотки тягового реле. Сердечник тягового реле перемещается и замыкает его, главные контакты, включая стартер. Одновременно замыкаются дополнительные контакты тягового реле, шунтирующие добавочное сопротивление катушки зажигания.

Главные контакты тягового реле, замыкаясь, шунтируют втягивающую обмотку реле, чем значительно снижается ток, потребляемый тяговым реле, так как якорь реле удерживается только удерживающей обмоткой. Если в схеме с генератором переменного тока отсутствует блокировка стартера, необходимо сразу после запуска двигателя отпустить ключ выключателя зажигания, чтобы быстрее вывести шестерню стартера из зацепления с венцом маховика.

Автомобили, выпускаемые в настоящее время отечественными и зарубежными производителями, оснащены сложной современной системой электрооборудования, которая включает в себя источники электроэнергии, соединительные провода и коммутационную аппаратуру. Электрооборудование выполнено по однопроводной схеме, то есть отрицательные выводы источников и потребителей электрической энергии соединены с «массой» (кузовом автомобиля). «Масса» выполняет роль второго провода.

Большинство электрических цепей включается через замок зажигания. Постоянно включены, независимо от положения ключа в замке зажигания, цепи питания звуковых сигналов, сигнала торможения, света фар, плафона освещения салона и штепсельной розетки. Электрооборудование автомобиля защищено плавкими предохранителями, установленными, как правило, в нижней части панели приборов с левой стороны в специальном монтажном отсеке. Для того чтобы облегчить поиск перегоревшего предохранителя, рекомендуем ознакомиться с электросхемой автомобиля. На крышке отсека с предохранителями обычно приведены их номинальное напряжение и схема расположения.

Ни в коем случае не следует заменять низкоамперные предохранители более мощными или проволочками, так как при этом возможен перегрев проводов и выход из строя коммутирующих элементов. Основной источник электрической энергии при неработающем двигателе – аккумуляторная батарея, которая служит для пуска двигателя при помощи стартера, а также для питания всех электрических цепей в подготовительном и аварийном режимах.

На современных автомобилях, сходящих с конвейера завода, установлены аккумуляторные батареи нового типа – необслуживаемые, готовые к использованию, т. е. залитые электролитом и заряженные. В таком же виде эти батареи поступают в запасные части.

Корпус (моноблок) батареи изготовлен из белой или цветной термопластичной пластмассы с общей крышей и межэлементными соединениями сквозь перегородку моноблока.

В связи с тем, что на батарее блоки электродов (пластины) опущены до самого дна, над пластинами более чем в 2 раза увеличился объем электролита, что позволило уменьшить периодичность доливки дистиллированной воды. При нормальном зарядном токе батарея нуждается в доливке дистиллированной воды не более 1 раза за четыре месяца эксплуатации. Батареи имеют меньший саморазряд и могут храниться залитыми электролитом и заряженными в течение 12 месяцев без подзарядки.

Готовность батареи к эксплуатации при установке на автомобиль проверяется путем измерения статического напряжения и плотности электролита. При напряжении менее 12,5 В батарею необходимо подзарядить.

Не реже 1 раза в месяц следует:

– проверить надежность крепления батареи в гнезде и контактов наконечников проводов с выводами батареи;

– при необходимости очистить батарею от грязи и пыли;

– проверить, нет ли видимых повреждений, таких как трещины и разрушения моноблока, крышки, вызывающие утечку электролита; при обнаружении течи снять батарею с автомобиля и устранить повреждение.

Периодически через каждые четыре месяца следует проверить уровень электролита. При значительном снижении уровня электролита необходимо проверить исправность электрооборудования. Регулируемое (зарядное) напряжение реле-регулятора должно быть в пределах 14,1+0,2 В.

<< 1 ... 4 5 6 7 8 9 10 11 12 >>
На страницу:
8 из 12