The opinion—derived from the recent study of the phenomena of fertilization—that the nucleus impresses its specific character upon the cell, has received conclusive and important confirmation in the experiments upon the regeneration of Infusoria, conducted simultaneously by M. Nussbaum[119 - M. Nussbaum, ‘Sitzungber. der Niederrheinischen Gesellschaft fur Natur- und Heilkunde.’ Dec. 15, 1884.] at Bonn, and by A. Gruber[120 - A. Gruber, ‘Biologisches Centralblatt,’ Bd. IV. No. 23, and V. No. 5.] at Freiburg. Nussbaum’s statement that an artificially separated portion of a Paramaecium, which does not contain any nuclear substance, immediately dies, must not be accepted as of general application, for Gruber has kept similar fragments of other Infusoria alive for several days. Moreover, Gruber had previously shown that individual Protozoa occur, which live in a normal manner, and are yet without a nucleus, although this structure is present in other individuals of the same species. But the meaning of the nucleus is made clear by the fact, published by Gruber, that such artificially separated fragments of Infusoria are incapable of regeneration, while on the other hand those fragments which contain nuclei always regenerate. It is therefore only under the influence of the nucleus that the cell substance re-developes into the full type of the species. In adopting the view that the nucleus is the factor which determines the specific nature of the cell, we stand on a firm foundation upon which we can build with security.
If therefore the first segmentation nucleus contains, in its molecular structure, the whole of the inherited tendencies of development, it must follow that during segmentation and subsequent cell-division, the nucleoplasm will enter upon definite and varied changes which must cause the differences appearing in the cells which are produced; for identical cell-bodies depend, ceteris paribus, upon identical nucleoplasm, and conversely different cells depend upon differences in the nucleoplasm. The fact that the embryo grows more strongly in one direction than in another, that its cell-layers are of different nature and are ultimately differentiated into various organs and tissues,—forces us to accept the conclusion that the nuclear substance has also been changed in nature, and that such changes take place during ontogenetic development in a regular and definite manner. This view is also held by Strasburger, and it must be the opinion of all who seek to derive the development of inherited tendencies from the molecular structure of the germ-plasm, instead of from preformed gemmules.
We are thus led to the important question as to the forces by which the determining substance or nucleoplasm is changed, and as to the manner in which it changes during the course of ontogeny, and on the answer to this question our further conclusions must depend. The simplest hypothesis would be to suppose that, at each division of the nucleus, its specific substance divides into two halves of unequal quality, so that the cell-bodies would also be transformed; for we have seen that the character of a cell is determined by that of its nucleus. Thus in any Metazoon the first two segmentation spheres would be transformed in such a manner that one only contained the hereditary tendencies of the endoderm and the other those of the ectoderm, and therefore, at a later stage, the cells of the endoderm would arise from the one and those of the ectoderm from the other; and this is actually known to occur. In the course of further division the nucleoplasm of the first ectoderm cell would again divide unequally, e.g. into the nucleoplasm containing the hereditary tendencies of the nervous system, and into that containing the tendencies of the external skin. But even then, the end of the unequal division of nuclei would not have been nearly reached; for, in the formation of the nervous system, the nuclear substance which contains the hereditary tendencies of the sense-organs, would, in the course of further cell-division, be separated from that which contains the tendencies of the central organs, and the same process would continue in the formation of all single organs, and in the final development of the most minute histological elements. This process would take place in a definitely ordered course, exactly as it has taken place throughout a very long series of ancestors; and the determining and directing factor is simply and solely the nuclear substance, the nucleoplasm, which possesses such a molecular structure in the germ-cell that all such succeeding stages of its molecular structure in future nuclei must necessarily arise from it, as soon as the requisite external conditions are present. This is almost the same conception of ontogenetic development as that which has been held by embryologists who have not accepted the doctrine of evolution: for we have only to transfer the primary cause of development, from an unknown source within the organism, into the nuclear substance, in order to make the views identical.
It appears at first sight that the knowledge which has been gained by studying the indirect division of nuclei is opposed to such a view, for we know that each mother-loop of the so-called nuclear plate divides longitudinally into two exactly equal halves, which can be stained and thus rendered visible.
In this way each resulting daughter-nucleus receives an equal supply of halves, and it therefore appears that the two nuclei must be completely identical. This at least is Strasburger’s conclusion, and he regards such identity as a fundamental fact, which cannot be shaken, and with which all attempts at further explanation must be brought into accord.
How then can the gradual transformation of the nuclear substance be brought about? For such a transformation must necessarily take place if the nuclear substance is really the determining factor in development. Strasburger attempts to support his hypothesis by assuming that the inequality of the daughter-nuclei arises from unequal nutrition; and he therefore considers that the inequality is brought about after the division of the nucleus and of the cell. Strasburger has shown, in a manner which is above all criticism, that the nucleus derives its nutrition from the cell-body, but then the cell-bodies of the two ex hypothesi identical daughter-nuclei must be different from the first, if they are to influence their nuclei in different ways. But if the nucleus determines the nature of the cell, it follows that two identical daughter-nuclei which have arisen by division within one mother-cell cannot come to possess unequal cell-bodies. As a matter of fact, however, the cell-bodies of two daughter-cells often differ in size, in appearance, and in their subsequent history, and these facts are sufficient to prove that in such cases the division of the nucleus must have been unequal. It appears to me to be a necessary conclusion that, in such an instance, the mother-nucleus must have been capable of splitting into nuclear substances of differing quality. I think that, in his argument, Strasburger has over-estimated the support afforded by exact observations upon indirect nuclear division. Certainly the fact, discovered by Flemming, and more exactly studied by Balbiani and Pfitzner, that, in nuclear division, the loops split longitudinally, is of great and even of fundamental importance. Furthermore, the observations, conducted last year by van Beneden, on the process of fertilization in Ascaris, have given to Flemming’s discovery a clearer and more definite meaning than could have been at first ascribed to it. The discovery proves, in the first place, that the nucleus always divides into two parts of equal quantity, and further that in every nuclear division, each daughter-nucleus receives the same amount of nuclear substance from the father as from the mother; but, as it seems to me, it is very far from proving that the quality of the parent nucleoplasms must always be equal in the daughter-nuclei. It is true that the fact seems to prove this; and if we remember the description of the most favourable instance which has been hitherto discovered, viz. the process of fertilization in the egg of Ascaris, as represented by van Beneden, the two longitudinal halves of each loop certainly impress the reader as being absolutely identical (compare, for instance, loc. cit. Plate XIX, figs. 1, 4, 5). But we must not forget that we do not see the molecular structure of the nucleoplasm, but something which we can only look upon (when we remember how complex this molecular structure must be) as a very rough expression of its quantity. Our most powerful and best lenses just enable us to make out the form of separate stainable granules present in a loop which is about to divide: they appear as spheres and immediately after division as hemispheres. But according to Strasburger, these granules, the so-called microsomata, only serve for the nutrition of the nuclear substance proper, which lies between them unstainable, and therefore not distinctly visible. But even if these granules represent the true idioplasm, their division into two exactly equal parts would give us no proof of equality or inequality in their constitution: it would only give us an idea of their quantitative relations. We can only obtain proofs as to the quality of the molecular structure of the two halves by their effect on the bodies of the daughter-cells, and we know that these latter are frequently different in size and quality.
This point is so important that I must illustrate it by a few more examples. The so-called polar bodies (to be treated more in detail below) which are expelled during maturation from the eggs of so many animals, are true cells, as was first proved by Bütschli in Nematodes: their formation is due to a process of undoubted cell-division usually accompanied by a typical form of indirect nuclear division[121 - According to the observations of Nussbaum and van Beneden, the egg of Ascaris departs from the ordinary type, but I think that the latter observer goes too far when he concludes from the form of the nuclear spindle (of which the two halves are inclined to each other at an angle) that we have before us a process entirely different from that of ordinary nuclear division.]. If any one is still in doubt upon this point, after the observations of Fol and Hertwig, he might easily be convinced of its truth by a glance at the figures (unfortunately too little known) which Trinchese[122 - Trinchese, ‘I primi momenti dell’ evoluzione nei molluschi,’ Atti Acad. Lyncei (3) vii. 1879, Roma.] has published, illustrating this process in the eggs of certain gastropods. The eggs of Amphorina coerulea are in every way suitable for observation, being entirely translucent, and having large distinct nuclei which differ from the green cytoplasm in colour. In these eggs two polar bodies are formed one after the other: and each of them immediately re-divides: hence it follows that four polar bodies are placed at the pole of the egg. But how is it that these four cells perish, while the nucleus, remaining in the yolk and conjugating with the sperm-nucleus, makes use of the whole body of the egg and developes into the embryo? Obviously because the nature of the polar body is different from that of the egg-cell. But since the nature of the cell is determined by the quality of the nucleus, this quality must differ from the very moment of nuclear division. This is proved by the fact that the supernumerary spermatozoa which sometimes enter the egg do not conjugate with the polar bodies. According to Strasburger’s theory, the objection might be urged that the different quality of the nuclei is here caused by the very different quantity of cytoplasm by which they are surrounded and nourished; but on the one hand the smallness of the cell-bodies which surround most polar globules must have some explanation, and this can only be found in the nature of the nucleus; and on the other hand the quantity of the cell-body which surrounds the polar globules of Amphorina is, as a matter of fact, somewhat larger than the sphere of green cytoplasm which surrounds the nucleus of the egg! The difference between the polar bodies and the egg-cell can thus only be explained on the supposition that, in the division of the nuclear spindle, two qualitatively different daughter-nuclei are produced.
There does not seem to be any objection to the view that the microsomata of the nuclear loops—assuming that these bodies represent the idioplasm—are capable of dividing into halves, equal in form and appearance, but unequal in quality. We know that this very process takes place in many egg-cells; thus in the egg of the earth-worm the first two segmentation spheres are equal in size and appearance, and yet the one forms the endoderm and the other the ectoderm of the embryo.
I therefore believe that we must accept the hypothesis that, in indirect nuclear division, the formation of unequal halves may take place quite as readily as the formation of equal halves, and that the equality or inequality of the subsequently produced daughter-cells must depend upon that of the nuclei. Thus during ontogeny a gradual transformation of the nuclear substance takes place, necessarily imposed upon it, according to certain laws, by its own nature, and such transformation is accompanied by a gradual change in the character of the cell-bodies.
It is true that we cannot gain any detailed knowledge of the nature of these changes in the nuclear substance, but we can very well arrive at certain general conclusions about them. If we may suppose, with Nägeli, that the molecular structure of the germ-idioplasm, or according to our terminology the germ-plasm, becomes more complicated according to the greater complexity of the organism developed from it, then the following conclusions will also be accepted,—that the molecular structure of the nuclear substance is simpler as the differences between the structures arising from it become less; that therefore the nuclear substance of the segmentation-cell of the earth-worm, which potentially contains the whole of the ectoderm, possesses a more complicated molecular structure than that of a single epidermic cell or nerve-cell. These conclusions will be admitted when it is remembered that every detail in the whole organism must be represented in the germ-plasm by its own special and peculiar arrangement of the groups of molecules (the micellae of Nägeli), and that the germ-plasm not only contains the whole of the quantitative and qualitative characters of the species, but also all individual variations as far as these are hereditary: for example the small depression in the centre of the chin noticed in some families. The physical causes of all apparently unimportant hereditary habits or structures, of hereditary talents, and other mental peculiarities, must all be contained in the minute quantity of germ-plasm which is possessed by the nucleus of a germ-cell;—not indeed as the preformed germs of structure (the gemmules of pangenesis), but as variations in its molecular constitution; if this be impossible, such characters could not be inherited. Nägeli has shown in his work, which is so rich in suggestive ideas, that even in so minute a space as the thousandth of a cubic millimetre, such an enormous number (400,000,000) of micellae may be present, that the most diverse and complicated arrangements become possible. It therefore follows that the molecular structure of the germ-plasm in the germ-cells of an individual must be distinguished from that of another individual by certain differences, although these may be but small; and it also follows that the germ-plasm of any species must differ from that of all other species.
These considerations lead us to conclude that the molecular structure of the germ-plasm in all higher animals must be excessively complex, and, at the same time, that this complexity must gradually diminish during ontogeny as the structures still to be formed from any cell, and therefore represented in the molecular constitution of its nucleoplasm, become less in number. I do not mean to imply that the nucleoplasm contains preformed structures which are gradually reduced in number as they are given off in various directions during the building-up of organs: I mean that the complexity of the molecular structure decreases as the potentiality for further development also decreases, such potentiality being represented in the molecular structure of the nucleus. The nucleoplasm, which in the grouping of its particles contains potentially a hundred different modifications of this substance, must possess far more numerous kinds and far more complex arrangements of such particles than the nucleoplasm which only contains a single modification, capable of determining the character of a single kind of cell. The development of the nucleoplasm during ontogeny may be to some extent compared to an army composed of corps, which are made up of divisions, and these of brigades, and so on. The whole army may be taken to represent the nucleoplasm of the germ-cell: the earliest cell-division (as into the first cells of the ectoderm and endoderm) may be represented by the separation of the two corps, similarly formed but with different duties: and the following cell-divisions by the successive detachment of divisions, brigades, regiments, battalions, companies, etc.; and as the groups become simpler so does their sphere of action become limited. It must be admitted that this metaphor is imperfect in two respects, first, because the quantity of the nucleoplasm is not diminished, but only its complexity, and secondly, because the strength of an army chiefly depends upon its numbers, not on the complexity of its constitution. And we must also guard against the supposition that unequal nuclear division simply means a separation of part of the molecular structure, like the detachment of a regiment from a brigade. On the contrary, the molecular constitution of the mother-nucleus is certainly changed during division in such a way that one or both halves receive a new structure which did not exist before their formation.
My opinion as to the behaviour of the idioplasm during ontogeny, not only differs from that of Nägeli, in that the latter maintains that the idioplasm only undergoes changes in its ‘conditions of tension and movement,’ but also because he imagines this substance to be composed of the preformed germs of structures (‘Anlagen’). Nägeli’s views are obviously bound up with his theory of a continuous network of idioplasm throughout the whole body; perhaps he would have adopted other conclusions had he been aware of the fact that the idioplasm must only be sought for in the nuclei. Nägeli’s views as to ontogeny can be best seen in the following passages: ‘As soon as ontogenetic development begins, the groups of micellae in the idioplasm which effect the first stage of development, enter upon active growth: such activity causes a passive growth of the other groups, and an increase in the whole idioplasm, perhaps to many times its former bulk. But the intensities of growth in the two series of groups are unequal, and consequently an increasing tension is produced which sooner or later, according to the number, arrangement, and energy of the active groups, necessarily renders the continuation of the process impossible. In consequence of such disturbance to the equilibrium, active growth now takes place in the next group, leading to fresh irritation, and this group then reacts more strongly than all the others upon the tension which first stimulated its activity. These changes are repeated until all the groups are gone through, and the ontogenetic development finally reaches the stage at which propagation takes place, and thus the original stage of the germ is reached.’
Hence, according to Nägeli, the different stages of ontogeny arise out of the activities of different parts of the idioplasm: certain groups of micellae in the idioplasm represent the germs (‘Anlagen’) of certain structures in the organism: when any such germ reacts under stimulation it produces the corresponding structure. It seems to me that this hypothesis bears some resemblance to Darwin’s theory of pangenesis. I think that Nägeli’s preformed germs of structures (‘Anlagen’) and his groups of such germs are highly elaborated equivalents of the gemmules of pangenesis, which, according to Darwin, manifest activity when their turn comes, or, according to Nägeli, when they react under stimulation. When a group of such germs, by their active growth or by their ‘irritation,’ have caused a similar active growth or a similar irritation in the next group, the former may come to rest, or may remain in a state of activity together with its successor, for a longer or shorter period. Its activity may even last for an unlimited time, as is the case in the formation of leafy shoots in many plants.
Here, again, we recognize the fact that Nägeli’s whole hypothesis is intimately connected with the supposition that the entire mass of idioplasm is continuous throughout the organism. Sometimes one part of the idioplasm and sometimes another part is irritated, and then produces the corresponding organ. But if, on the other hand, the idioplasm does not represent a directly continuous mass, but is composed of thousands of single nucleoplasms which only act together through the medium of their cell-bodies, then we must substitute the conception of ‘ontogenetic stages of development of the idioplasm’ for the conception of germs of structure (‘Anlagen’). The different varieties of nucleoplasm which arise during ontogeny represent, as it were, the germs of Nägeli (‘Anlagen’), because, by means of their molecular structure, they create a specific constitution in the cell-bodies over which they have control, and also because they determine the succession of future nuclei and cells.
It is in this sense, and no other, that I can speak of the presence of preformed germs (‘Anlagen’) in the idioplasm. We may suppose that the idioplasm of the first segmentation nucleus is but slightly different from that of the second ontogenetic stage, viz. that of the two following segmentation nuclei. Perhaps only a few groups of micellae have been displaced or somewhat differently arranged. But nevertheless such groups of micellae were not the germs (‘Anlagen’) of a second stage which pre-existed in the first stage, for the two are distinguished by the possession of a different molecular structure. This structure in the second stage, under normal conditions of development, again brings about the change by which the different molecular structure of the third stage is produced, and so on.
It may be argued that von Baer’s well-known and fundamental law of development is opposed to the hypothesis that the idioplasm of successive ontogenetic stages must gradually assume a simpler molecular structure. The organization of the species has, on the whole, increased immensely in complexity during the course of phylogeny: and if the phyletic stages are repeated in the ontogeny, it seems to follow that the structure of the idioplasm must become more complex in the course of ontogeny instead of becoming simpler. But the complexity of the whole organism is not represented in the molecular structure of the idioplasm of any single nucleus, but by that of all the nuclei present at any one time. It is true that the germ-cell, or rather the idioplasm of the germ-nucleus, must gain greater complexity as the organism which arises from it becomes more complex; but the individual nucleoplasms of each ontogenetic stage may become simpler, while the whole mass of idioplasms in the organism (which, taken together, represent the stage in question) does not by any means lose in complexity.
If we must therefore assume that the molecular structure of the nucleoplasm becomes simpler in the course of ontogeny, as the number of structures which it potentially contains become smaller, it follows that the nucleoplasm in the cells of fully differentiated tissues—such as muscle, nerve, sense-organs, or glands—must possess relatively the most simple molecular structure; for it cannot originate any fresh modification of nucleoplasm, but can only continue to produce cells of the same structure, although it does not always retain this power.
We are thus brought back to the fundamental question as to how the germ-cells arise in the organism. Is it possible that the nucleoplasm of the germ-cell, with its immensely complex molecular structure, potentially containing all the specific peculiarities of an individual, can arise from the nucleoplasm of any of the body-cells,—a substance which, as we have just seen, has lost the power of originating any new kind of cell, because of the continual simplification of its structure during development? It seems to me that it would be impossible for the simple nucleoplasm of the somatic cells to thus suddenly acquire the power of originating the most complex nucleoplasm from which alone the entire organism can be built up: I cannot see any evidence for the existence of a force which could effect such a transformation.
This difficulty has already been appreciated by other writers. Nussbaum’s[123 - M. Nussbaum, ‘Archiv für Mikroskopische Anatomie,’ Bd. XVIII und XXIII.] theoretical views, which I have already mentioned, also depend upon the hypothesis that cells which have once become differentiated for the performance of special functions cannot be re-transformed into sexual cells: he also concludes that the latter are separated from all other cells at a very early period of embryonic development, before any histological differentiation has taken place. Valaoritis[124 - Valaoritis, ‘Die Genesis des Thier-Eies.’ Leipzig, 1882.] has also recognised that the transformation of histologically differentiated cells into sexual cells is impossible. He was led to believe that the sexual cells of Vertebrata arise from the white blood corpuscles, for he looked upon these latter as differentiated to the smallest extent possible. Neither of these views can be maintained. The former, because the sexual cells of all plants and most animals are not, as a matter of fact, separated from the somatic cells at the beginning of ontogeny; the latter, because it is contradicted by the fact that the sexual cells of vertebrates do not arise from blood corpuscles, but from the germinal epithelium. But even if this fact had not been ascertained we should be compelled to reject Valaoritis’ hypothesis on theoretical grounds, for it is an error to assume that white blood corpuscles are undifferentiated, and that their nucleoplasm is similar to the germ-plasm. There is no nucleoplasm like that of the germ-cell in any of the somatic cells, and no one of these latter can be said to be undifferentiated. All somatic cells possess a certain degree of differentiation, which may be rigidly limited to one single direction, or may take place in one of many directions. All these cells are widely different from the egg-cell from which they originated: they are all separated from it by many generations of cells, and this fact implies that their idioplasms possess a widely different structure from the idioplasm, or germ-plasm, of the egg-cell. Even the nuclei of the two first segmentation spheres cannot possess the same idioplasm as that of the first segmentation nucleus, and it is, of course, far less possible for such an idioplasm to be present in the nucleus of any of the later cells of the embryo. The structure of the idioplasm must necessarily become more and more different from that of the first segmentation nucleus, as the development of the embryo proceeds. The idioplasm of the first segmentation nucleus, and of this nucleus alone, is germ-plasm, and possesses a structure such that an entire organism can be produced from it. Many writers appear to consider it a matter of course that any embryonic cell can reproduce the entire organism, if placed under suitable conditions. But, when we carefully look into the subject, we see that such powers are not even possessed by those cells of the embryo which are nearest to the egg-cell—viz. the first two segmentation spheres. We have only to remember the numerous cases in which one of them forms the ectoderm of the animal while the other produces the endoderm, in order to admit the validity of this objection.
But if the first segmentation spheres are not able to develope into a complete organism, how can this be the case with one of the later embryonic cells, or one of the cells of the fully developed animal body? It is true that we speak of certain cells as being ‘of embryonic character,’ and only recently Kölliker[125 - Kölliker, ‘Die Bedeutung der Zellkerne,’ etc.; Zeitschr. f. wiss. Zool. Bd. XLII.] has given a list of such cells, among which he includes osteoblasts, cartilage cells, lymph corpuscles, and connective tissue corpuscles: but even if these cells really deserve such a designation, no explanation of the formation of germ-cells is afforded, for the idioplasm of the latter must be widely different from that of the former.
It is an error to suppose that we gain any further insight into the formation of germ-cells by referring to these cells of so-called ‘embryonic character,’ which are contained in the body of the mature organism. It is of course well known that many cells are characterized by very sharply defined histological differentiation, while others are but slightly differentiated; but it is as difficult to imagine that germ-cells can arise from the latter as from the former. Both classes of cells contain idioplasm with a structure different from that which is contained in the germ-cell, and we have no right to assume that any of them can form germ-cells until it is proved that somatic idioplasm is capable of undergoing re-transformation into germ-idioplasm.
The same argument applies to the cells of the embryo itself, and it therefore follows that those instances of early separation of sexual from somatic cells, upon which I have often insisted as indicating the continuity of the germ-plasm, do not now appear to be of such conclusive importance as at the time when we were not sure about the localization of the idioplasm in the nuclei. In the great majority of cases the germ-cells are not separated at the beginning of embryonic development, but only in some one of the later stages. A single exception is found in the pole-cells (‘Polzellen’) of Diptera, as was shown many years ago by Robin[126 - ‘Compt. rend.’ Tom. LIV. p. 150.] and myself[127 - ‘Entwicklung der Dipteren.’ Leipzig, 1864.]. These are the first cells formed in the egg, and according to the later observations of Metschnikoff[128 - ‘Zeitschr. f. wiss. Zool.’ Bd. XVI. p. 389 (1866).] and Balbiani[129 - ‘Compt. rend.’ Nov. 13, 1882.], they become the sexual glands of the embryo. Here therefore the germ-plasm maintains a true unbroken continuity. The nucleus of the egg-cell directly gives rise to the nuclei of the pole-cells, and there is every reason to believe that the latter receive unchanged a portion of the idioplasm of the former, and with it the tendencies of heredity. But in all other cases the germ-cells arise by division from some of the later embryonic cells, and as these belong to a more advanced ontogenetic stage in the development of the idioplasm, we can only conclude that continuity is maintained, by assuming (as I do) that a small part of the germ-plasm persists unchanged during the division of the segmentation nucleus and remains mixed with the idioplasm of a certain series of cells, and that the formation of true germ-cells is brought about at a certain point in the series by the appearance of cells in which the germ-plasm becomes predominant. But if we accept this hypothesis it does not make any difference, theoretically, whether the germ-plasm becomes predominant in the third, tenth, hundredth, or millionth generation of cells. It therefore follows that cases of early separation of the germ-cells afford no proof of a direct persistence of the parent germ-cells in those of the offspring; for a cell the offspring of which become partly somatic and partly germ-cells cannot itself have the characters of a germ-cell; but it may nevertheless contain germ-idioplasm, and may thus transfer the substance which forms the basis of heredity from the germ of the parent to that of the offspring.
If we are unwilling to accept this hypothesis, nothing remains but to credit the idioplasm of each successive ontogenetic stage with a capability of re-transformation into the first stage. Strasburger accepts this view; and he believes that the idioplasm of the nuclei changes during the course of ontogeny, but returns to the condition of the first stage of the germ, at its close. But the rule of probability is against such a suggestion. Suppose, for instance, that the idioplasm of the germ-cell is characterized by ten different qualities, each of which may be arranged relatively to the others in two different ways, then the probability in favour of any given combination would be represented by the fraction (1/2)
= 1/1024: that is to say, the re-transformation of somatic idioplasm into germ-plasm will occur once in 1024 times, and it is therefore impossible for such re-transformation to become the rule. It is also obvious that the complex structure of the germ-plasm which potentially contains, with the likeness of a faithful portrait, the whole individuality of the parent, cannot be represented by only ten characters, but that there must be an immensely greater number; it is also obvious that the possibilities of the arrangement of single characters must be assumed to be much larger than two; so that we get the formula (1/p), where p represents the possibilities, and n the characters. Thus if n and p are but slightly larger than we assumed above, the probabilities become so slight as to altogether exclude the hypothesis of a re-transformation of somatic idioplasm into germ-plasm.
It may be objected that such re-transformation is much more probable in the case of those germ-cells which separate early from the somatic cells. Nothing can in fact be urged against the possibility that the idioplasm of (e. g.) the third generation of cells may pass back into the condition of the idioplasm of the germ-cell; although of course the mere possibility does not prove the fact. But there are not many cases in which the sexual cells are separated so early as the third generation: and it is very rare for them to separate at any time during the true segmentation of the egg. In Daphnidae (Moina) separation occurs in the fifth stage of segmentation[130 - Grobben, ‘Arbeiten d. Wien. Zool. Instituts,’ Bd. II. p. 203.], and although this is unusually early it does not happen until the idioplasm has changed its molecular structure six times. In Sagitta[131 - Bütschli, ‘Zeitschrift f. wiss. Zool.’ Bd. XXIII. p. 409.] the separation does not take place until the archenteron is being formed, and this is after several hundred embryonic cells have been produced, and thus after the germ-plasm has changed its molecular structure ten or more times. But in most cases, separation takes place at a much later stage; thus in Hydroids it does not happen until after hundreds or thousands of cell-generations have been passed through; and the same fact holds in the higher plants, where the production of germ-cells frequently occurs at the end of ontogeny. In such cases the probability of a re-transformation of somatic idioplasm into germ-plasm becomes infinitely small.
It is true that these considerations only refer to a rapid and sudden re-transformation of the idioplasm. If it could be proved that development is not merely in appearance but in reality a cyclical process, then nothing could be urged against the occurrence of re-transformation. It has been recently maintained by Minot[132 - ‘Science,’ vol. iv. No. 90, 1884.] that all development is cyclical, but this is obviously incorrect, for Nägeli has already shown that direct non-cyclical courses of development exist, or at all events courses in which the earliest condition is not repeated at the close of development. The phyletic development of the whole organic world clearly illustrates a development of the latter kind; for although we may assume that organic development is not nearly concluded, it is nevertheless safe to predict that it will never revert to its original starting-point, by backward development over the same course as that which it has already traversed. No one can believe that existing Phanerogams will ever, in the future history of the world, retrace all the stages of phyletic development in precise inverse order, and thus return to the form of unicellular Algae or Monera; or that existing placental mammals will develope into Marsupialia, Monotremata, mammal-like reptiles, and the lower vertebrate forms, into worms and finally into Monera. But how can a course of development, which seems to be impossible in phylogeny, occur as the regular method of ontogeny? And quite apart from the question of possibility, we have to ask for proofs of the actual occurrence of cyclical development. Such a proof would be afforded if it could be shown that the nucleoplasm of those somatic cells which (e.g. in Hydroids) are transformed into germ-cells passes backwards through many stages of development into the nucleoplasm of the germ-cell. It is true that we can only recognise differences in the structure of the idioplasm by its effects upon the cell-body, but no effects are produced which indicate that such backward development takes place. Since the course of onward development is compelled to pass through the numerous stages which are implied in segmentation and the subsequent building-up of the embryo, etc., it is quite impossible to assume that backward development would take place suddenly. It would be at least necessary to suppose that the cells of embryonic character, which are said to be transformed into primitive germ-cells, must pass back through at any rate the main phases of their ontogeny. A sudden transformation of the nucleoplasm of a somatic cell into that of a germ-cell would be almost as incredible as the transformation of a mammal into an amoeba; and yet we are compelled to admit that the transformation must be sudden, for no trace of such retrogressive stages of development can be seen. If the appearance of the whole cell gives us any knowledge as to the structure of its nuclear idioplasm, we may be sure that the development of a primitive germ-cell proceeds without a break, from the moment of its first recognizable formation, to the ultimate production of distinct male or female sexual cells.
I am well aware that Strasburger has stated that, in the ultimate maturation of the sexual cells, the substance of the nuclei returns to a condition similar to that which existed at the beginning of ontogenetic development; still such a statement is no proof, but only an assumption made to support a theory. I am also aware that Nussbaum and others believe that, in the formation of spermatozoa in higher animals, a backward development sets in at a certain stage; but even if this interpretation be correct, such backward development would only lead as far as the primitive germ-cell, and would afford no explanation of the further transformation of the idioplasm of this cell into germ-plasm. But this latter transformation is just the point which most needs proof upon any theory except the one which assumes that the primitive germ-cell still contains unchanged germ-plasm. Every attempt to render probable such a re-transformation of somatic nucleoplasm into germ-plasm breaks down before the facts known of the Hydroids, in which only certain cells in the body, out of the numerous so-called embryonic cells, are capable of becoming primitive germ-cells, while the rest do not possess this power.
I must therefore consider as erroneous the hypothesis which assumes that the somatic nucleoplasm may be transformed into germ-plasm. Such a view may be called ‘the hypothesis of the cyclical development of the germ-plasm.’
Nägeli has tried to support such an hypothesis on phyletic grounds. He believes that phyletic development follows from an extremely slow but steady change in the idioplasm, in the direction of greater complexity, and that such changes only become visible periodically. He believes that the passage from one phyletic stage to another is chiefly due to the fact that ‘in any ontogeny, the very last structural change upon which the separation of germs depends, takes place in a higher stage, one or more cell-generations later’ than it occurred in a lower stage. ‘The last structural change itself remains the same, while the series of structural changes immediately preceding it is increased.’ I believe that Nägeli, being a botanist, has been too greatly influenced by the phenomena of plant-life. It is certainly true that in plants, and especially in the higher forms, the germ-cells only make their appearance, as it were, at the end of ontogeny; but facts such as these do not hold in the animal kingdom: at any rate they are not true in the great majority of cases. In animals, as I have already mentioned several times, the germ-cells are separated from the somatic cells during embryonic development, sometimes even at its very commencement; and it is obvious that this latter is the original, phyletically oldest, mode of formation. The facts at our disposal indicate that the germ-cells only appear, for the first time, after embryological development, in those cases where the formation of asexually produced colonies takes place, either with or without alternation of generations; or in cases where alternation of generations occurs without the formation of such colonies. In a colony of polypes, the germ-cells are produced by the later generations, and not by the founder of the colony which was developed from an egg. This is also true of the colonies of Siphonophora, and the germ-cells appear to arise very late in certain instances of protracted metamorphosis (Echinodermata), but on the other hand, they arise during the embryonic development of other forms (Insecta) which also undergo metamorphosis. It is obvious that the phyletic development of colonies or stocks must have succeeded that of single individuals, and that the formation of germ-cells in the latter must therefore represent the original method. Thus the germ-cells originally arose at the beginning of ontogeny and not at its close, when the somatic cells are formed.
This statement is especially supported by the history of certain lower plants, or at any rate chlorophyll-containing organisms, and I think that these forms supply an admirable illustration of my theory as to the phyletic origin of germ-cells, as explained in my earlier papers upon the same subject.
The phyletic origin of germ-cells obviously coincides with the differentiation of the first multicellular organisms by division of labour[133 - Among unicellular organisms, encysted individuals are often called germs. They sometimes differ from the adult organism in their smaller size and simpler structure (Gregarinidae), but they represent the same morphological stage of individuality.]. If we desire to investigate the relation between germ-cells and somatic cells, we must not only consider the highly developed and strongly differentiated multicellular organisms, but we must also turn our attention to those simpler forms in which phyletic transitions are represented. In addition to solitary unicellular organisms, we know of others living in colonies of which the constituent units or cells (each of them equivalent to a unicellular organism) are morphologically and physiologically identical. Each unit feeds, moves, and under certain circumstances is capable of reproducing itself, and of thus forming a new colony by repeated division. The genus Pandorina (Fig. I), belonging to the natural order Volvocineae, represents such ‘homoplastid’ (Götte) organisms. It forms a spherical colony composed of ciliated cells, all of which are exactly alike: they are embedded in a colourless gelatinous mass. Each cell contains chlorophyll, and possesses a red eye-spot, and a pulsating vacuole. These colonies are propagated by the sexual and asexual (Fig. II) methods alternately, although in the former case the conjugating swarm-cells cannot be distinguished with certainty as male or female. In both kinds of reproduction, each cell in the colony acts as a reproductive cell; in fact, it behaves exactly like a unicellular organism.
I. Pandorina morum (after Pringsheim), a swarming colony.
II. A colony divided into sixteen daughter colonies: all the cells alike.
III. A young individual of Volvox minor (after Stein), still enclosed in the wall of the cell from which it has been parthenogenetically produced. The constituent cells are divided into somatic (sz), germ-cells (kz).
It is very interesting to find in another genus belonging to the same natural order, that the transition from the homoplastid to the heteroplastid condition, and the separation into somatic and reproductive cells, have taken place. In Volvox (Fig. III) the spherical colony consists of two kinds of cells, viz. of very numerous small ciliated cells, and of a much smaller number of large germ-cells without cilia. The latter alone possess the power of producing a new colony, and this takes place by the asexual and sexual methods alternately: in the latter a typical fertilization of large egg-cells by small spermatozoa occurs. The sexual differentiation of the germ-cells is not material to the question we are now considering; the important point is to ascertain whether here, at the very origin of heteroplastid organisms, the germ-cells, sexually differentiated or not, arise from the somatic cells at the end of ontogeny, or whether the substance of the parent germ-cell, during embryonic development, is from the first separated into somatic and germ-cells. The former interpretation would support Nägeli’s view, the latter would support my own. But Kirchner[134 - Compare Bütschli in Bronn’s ‘Klassen und Ordnungen des Thierreichs,’ Bd. I. p. 777.] distinctly states that the germ-cells of Volvox are differentiated during embryonic development, that is, before the escape of the young heteroplastid organism from the egg-capsule. We cannot therefore imagine that the phyletic development of the first heteroplastid organism took place in a manner different from that which I have previously advocated on theoretical grounds, before this striking instance occurred to me. The germ-plasm (nucleoplasm) of some homoplastid organism (similar to Pandorina) must have become modified in molecular structure during the course of phylogeny, so that the colony of cells produced by its division was no longer made up of identical units, but of two different kinds. After this separation, the germ-cells alone retained the power of reproduction possessed by all the parent cells, while the rest only retained the power of producing similar cells by division. Thus Volvox seems to afford distinct evidence that in the phyletic origin of the heteroplastid groups, somatic cells were not, as Nägeli supposes, intercalated between the mother germ-cell and the daughter germ-cells in each ontogeny, but that the somatic cells arose directly from the former, with which they were previously identical, as they are even now in the case of Pandorina. Thus the continuity of the germ-plasm is established at least for the beginning of the phyletic series of development.
The fact, already often mentioned, that in most higher organisms the separation of germ-cells takes place later, and often very late, at the end of the whole ontogeny, proves that the time at which this separation of the two kinds of cells took place, must have been gradually changed. In this respect the well-established instances of early separation are of great value, because they serve to connect the extreme cases. It is quite impossible to maintain that the germ-cells of Hydroids or of the higher plants, exist from the time of embryonic development, as indifferent cells, which cannot be distinguished from others, and which are only differentiated at a later period. Such a view is contradicted by the simplest mathematical consideration; for it is obvious that none of the relatively few cells of the embryo can be excluded from the enormous increase by division, which must take place in order to produce the large number of daughter individuals which form a colony of polypes. It is therefore clear that all the cells of the embryo must for a long time act as somatic cells, and none of them can be reserved as germ-cells and nothing else: this conclusion is moreover confirmed by direct observation. The sexual bud of a Coryne arises at a part of the Polype which does not in any way differ from surrounding areas, the body wall being uniformly made up of two single layers of cells, the one forming the ectoderm and the other the endoderm. Rapid growth then takes place at a single spot, and some of the young cells thus produced are transformed into germ-cells, which did not previously exist as separate cells.
Strictly speaking I have therefore fallen into an inaccuracy in maintaining (in former works) that the germ-cells are themselves immortal; they only contain the undying part of the organism—the germ-plasm; and although this substance is, as far as we know, invariably surrounded by a cell-body, it does not always control the latter, and thus confer upon it the character of a germ-cell. But this admission does not materially change our view of the whole subject. We may still contrast the germ-cells, as the undying part of the Metazoan body, with the perishable somatic cells. If the nature and the character of a cell is determined by the substance of the nucleus and not by the cell-body, then the immortality of the germ-cells is preserved, although only the nuclear substance passes uninterruptedly from one generation to another.
G. Jäger[135 - Gustav Jäger, ‘Lehrbuch der Allgemeinen Zoologie,’ Leipzig, 1878; II. Abtheilung. Probably on account of the extravagant and superficial speculations of the author, the valuable ideas contained in his book have been generally overlooked. It is only lately that I have become aware of Jäger’s above-mentioned hypothesis. M. Nussbaum seems to have also arrived at the same conclusion quite independently of Jäger. The latter has not attempted to work out his hypothesis with any degree of completeness. The above-mentioned observations are followed immediately by quite valueless considerations, as, for instance, that the ontogenetic and phyletic groups are in concentric ratio! The author might as well speak of a quadrangular or triangular ratio!] was the first to state that the body in the higher organisms is made up of two kinds of cells, viz., ontogenetic and phyletic cells, and that the latter, the reproductive cells, are not a product of the former (the body-cells), but that they arise directly from the parent germ-cell. He assumed that the formation of germ-cells takes place at the earliest stage of embryonic life, and he thus believed the connexion between the germ-plasm of the parent and of the offspring had received a satisfactory explanation. As I have previously mentioned in the introduction, Nussbaum also brought forward this hypothesis at a later period, and also based it upon a continuity of the germ-cells. He assumed that the fertilized egg is divided into the cells of the individual and into the cells which effect the preservation of the species, and he supported this view by referring to the few known cases of early separation of the sexual cells. He even maintained this hypothesis when I had proved in my investigations on Hydromedusae that the sexual cells are not always separated from the somatic cells during embryonic development, but often at a far later period. Not only is the hypothesis of a direct connexion between the germ-cells of the offspring and parent broken down by the facts known in the Hydroids, and in the Phanerogams[136 - [Facts of the same kind are also known in the Vascular Cryptogams, Muscineae, Characeae, Florideae, etc.—S. S.]] which resemble them in this respect, but even the instances of early separated germ-cells quoted by Jäger and Nussbaum do not as a matter of fact support their hypothesis. Among existing organisms it is extremely rare for the germ-cells to arise directly from the parent egg-cell (as in Diptera). If, however, the germ-cells are separated only a few cell-generations later, the postulated continuity breaks down; for an embryonic cell, of which the offspring are partly germ-cells and partly somatic cells, cannot itself possess the nature of a germ-cell, and its idioplasm cannot be identical with that of the parent germ-cell. In order to prove this, it is only necessary to refer to the arguments as to the ontogenetic stages of the idioplasm. In the above-mentioned instances, the continuity from the germ-substance of the parent to that of the offspring can only be explained by the supposition that the somatic nucleoplasm still contains some unchanged germ-plasm. I believe that the fundamental idea of Jäger and Nussbaum is quite correct: it is the same idea which has led me to the hypothesis of the continuity of the germ-plasm, viz., the conviction that heredity can only be understood by means of such an hypothesis. But both these writers have worked out the idea in the form of an hypothesis which does not correspond with the facts. That this is the case is also shown by the following words of Nussbaum—‘the cell-material of the individual (somatic cells) can never produce a single sexual cell.’ Such production undoubtedly takes place, not only in Hydroids and Phanerogams, but in many other instances. The germ-cells cannot indeed be produced by any indifferent cell of embryonic character, but by certain cells, and under circumstances which allow us to positively conclude that they have been predestined for this purpose from the beginning. In other words, the cells in question contain germ-plasm, and this alone enables them to become germ-cells.
As a result of my investigations on Hydroids[137 - Weismann, ‘Die Entstehung der Sexualzellen bei den Hydromedusen.’ Jena, 1883.], I concluded that the germ-plasm is present in a very finely divided and therefore invisible state in certain somatic cells, from the very beginning of embryonic development, and that it is then transmitted through innumerable cell-generations, to those remote individuals of the colony in which sexual products are formed. This conclusion is based upon the fact that germ-cells only occur in certain localized areas (‘Keimstätten’) in which neither germ-cells nor primitive germ-cells (the cells which are transformed into germ-cells at a later period) were previously present. The primitive germ-cells are also only formed in localized areas, arising from somatic cells of the ectoderm. The place at which germ-cells arise is the same in all individuals of the same species; but differs in different species. It can be shown that such differences correspond to different phyletic stages of a process of displacement, which tends to remove the localized area from its original position (the manubrium of the Medusa) in a centripetal direction. For the purposes of the present enquiry it is unnecessary to discuss the reasons for this change of position. The phyletic displacements of the localized areas are brought about during ontogeny by an actual migration of primitive germ-cells from the place where they arose to the position at which they undergo differentiation into germ-cells. But we cannot believe that primitive germ-cells would migrate if the germ-cells could be formed from any of the other young cells of indifferent character which are so numerous in Hydroids. Even when the localized area undergoes very slight displacement, e.g. when it is removed from the exterior to the interior of the mesogloea[138 - [I adopt this term, suggested by E. Ray Lankester and G. C. Bourne, as the name of the supporting lamina of Coelenterata. See ‘Quart. Journ. Microsc. Sci.’ Jan. 1887, p. 28.—E. B. P.]], the change is always effected by active migration of primitive germ-cells through the substance of the mesogloea. Although the localized area has been largely displaced in the course of phylogeny, the changes in position have always taken place by very gradual stages, and never suddenly, and all these stages are repeated in the ontogeny of all existing species, by the migration of the primitive germ-cells from the ancestral area to the place where the germ-cells now arise. Hartlaub[139 - Dr. Clemens Hartlaub, ‘Ueber die Entstehung der Sexualzellen bei Obelia.’ Freiburg, Inaugural Dissertation: see also ‘Zeitschrift für wissenschaftliche Zoologie.’ Bd. XLI. 1884.] has recently added a further instance (that of Obelia) to the numerous minute descriptions of these phyletic displacements of the localized area, and ontogenetic migrations of the primitive germ-cells, which are given in my work already referred to. The instance of Obelia is of especial interest as the direction of displacement is here reversed, taking place centrifugally instead of in a centripetal direction.
But if displacements of the localized areas can only take place by the frequently roundabout method of the migration of primitive germ-cells, we are obliged to conclude that such is the only manner in which the change can be effected, and that other cells are unable to play the role of the primitive germ-cells. And if other cells are unable to take this part, it must be because nucleoplasm of a certain character has to be present in order to form germ-cells, or according to the terms of my theory, the presence of germ-plasm is indispensable for this purpose. I do not see how we can escape the conclusion that there is continuity of the germ-plasm; for if it were supposed that somatic idioplasm undergoes transformation into germ-plasm, such an assumption would not explain why the displacement occurs by small stages, and with extreme and constant care for the preservation of a connexion with cells of the ancestral area. This fact can only be explained by the hypothesis that cell-generations other than those which end in the production of the cells of the ancestral area, are totally incapable of transformation into germ-cells.
Strasburger has objected that the transmission of germ-plasm along certain lines, viz. through a certain succession of somatic cells, is impossible, because the idioplasm is situated in the nucleus and not in the cell-body, and because a nucleus can only divide into two exactly equal halves by the indirect method of division, which takes place, as we must believe, in these cases. ‘It might indeed be supposed,’ says Strasburger, ‘that during nuclear division certain molecular groups remain unchanged in the nuclear substance which is in other respects transformed, and that these groups are uniformly distributed through the whole organism; but we cannot imagine that their transmission could only be effected along certain lines.’
I do not think that Strasburger’s objections can be maintained. I base this opinion on my previous criticism upon the assumed equality of the two daughter-nuclei formed by indirect division. I do not see any reason why the two halves must always possess the same structure, although they may be of equal size and weight. I am surprised that Strasburger should admit the possibility that the germ-plasm, which, as I think, is mixed with the idioplasm of the somatic cells, may remain unchanged in its passage through the body; for if this writer be correct in maintaining that the changes of nuclear substance in ontogeny are effected by the nutritive influence of the cell-body (cytoplasm), it follows that the whole nuclear substance of a cell must be changed at every division, and that no unchanged part can remain. We can only imagine that one part of a nucleus may undergo change while the other part remains unchanged, if we hold that the necessary transformations of nuclear substance are effected, by purely internal causes, viz. that they follow from the constitution of the nucleoplasm. But that one part may remain unchanged, and that such persistence does, as a matter of fact, occur is shown by the cases above described, in which the germ-cells separate very early from the developing egg-cell. Thus in the egg of Diptera, the two nuclei which are first separated by division from the segmentation nucleus, form the sexual cells, and this proves that they receive the germ-plasm of the segmentation nucleus unchanged. But during or before the separation of these two nuclei, the remaining part of the segmentation nucleus must have become changed in nature, or else it would continue to form ‘pole-cells’ at a later period instead of forming somatic cells. Although in many cases the cell-bodies of such early embryonic cells fail to exhibit any visible differences, the idioplasm of their nuclei must undoubtedly differ, or else they could not develope in different directions. It seems to me not only possible, but in every way probable, that the bodies of such early embryonic cells are equal in reality as well as in appearance; for, although the idioplasm of the nucleus determines the character of the cell-body, and although every differentiation of the latter depends upon a certain structure of its nucleoplasm, it does not necessarily follow that the converse proposition is true, viz. that each change in the structure of the nucleoplasm must effect a change in the cell-body. Just as rain is impossible without clouds, but every cloud does not necessarily produce rain, so growth is impossible without chemical change, but chemical processes of every kind and degree need not produce growth. In the same manner every kind of change in the molecular structure of the nucleoplasm need not exercise a transforming influence on the cytoplasm, and we can easily imagine that a long series of changes in the nucleoplasm may appear only in the kind and energy of the nuclear divisions which take place, the cell-substance remaining unchanged, as far as its molecular and chemical structure is concerned. This suggestion is in accordance with the fact that during the first period of embryonic development in animals, the cell-bodies do not exhibit any visible differences, or only such as are very slight; although exceptional instances occur, especially among the lower animals. But even these latter (e.g. the difference in appearance of the cells of the ectoderm and endoderm in sponges and Coelenterata) perhaps depend more largely upon a different admixture of nutritive substances than upon any marked difference in the cytoplasm itself. It is obvious that, in the construction of the embryo, the amount of cell-material must be first of all increased, and that it is only at a later period that the material must be differentiated so as to possess various qualities, according to the principle of division of labour. Facts of this kind are also opposed to Strasburger’s view, that the cause of changes in the nucleoplasm does not lie within this substance itself but within the cell-body.
I believe I have shown that theoretically hardly any objections can be raised against the view that the nuclear substance of somatic cells may contain unchanged germ-plasm, or that this germ-plasm may be transmitted along certain lines. It is true that we might imagine a priori that all somatic nuclei contain a small amount of unchanged germ-plasm. In Hydroids such an assumption cannot be made, because only certain cells in a certain succession possess the power of developing into germ-cells; but it might well be imagined that in some organisms it would be a great advantage if every part possessed the power of growing up into the whole organism and of producing sexual cells under appropriate circumstances. Such cases might exist if it were possible for all somatic nuclei to contain a minute fraction of unchanged germ-plasm. For this reason, Strasburger’s other objection against my theory also fails to hold; viz. that certain plants can be propagated by pieces of rhizomes, roots, or even by means of leaves, and that plants produced in this manner may finally give rise to flowers, fruit and seeds, from which new plants arise. ‘It is easy to grow new plants from the leaves of Begonia which have been cut off and merely laid upon moist sand, and yet in the normal course of ontogeny the molecules of germ-plasm would not have been compelled to pass through the leaf; and they ought therefore to be absent from its tissue. Since it is possible to raise from the leaf a plant which produces flower and fruit, it is perfectly certain that special cells containing the germ substance cannot exist in the plant.’ But I think that this fact only proves, that in Begonia and similar plants, all the cells of the leaves or perhaps only certain cells contain a small amount of germ-plasm, and that consequently these plants are specially adapted for propagation by leaves. How is it then that all plants cannot be reproduced in this way? No one has ever grown a tree from the leaf of the lime or oak, or a flowering plant from the leaf of the tulip or convolvulus. It is insufficient to reply that, in the last-mentioned cases, the leaves are more strongly specialized, and have thus become unable to produce germ-substance; for the leaf-cells in these different plants have hardly undergone histological differentiation in different degrees. If, notwithstanding, the one can produce a flowering plant, while the others have not this power, it is of course clear that reasons other than the degree of histological differentiation must exist; and, according to my opinion, such a reason is to be found in the admixture of a minute quantity of unchanged germ-plasm with some of their nuclei.
In Sachs’ excellent lectures on the physiology of plants, we read on page 723[140 - English translation, by H. Marshall Ward. Oxford, 1887, Clarendon Press.]—‘In the true mosses almost any cell of the roots, leaves and shoot-axes, and even of the immature sporogonium, may grow out under favourable conditions, become rooted, form new shoots, and give rise to an independent living plant.’ Since such plants produce germ-cells at a later period, we have here a case which requires the assumption that all or nearly all cells must contain germ-plasm.
The theory of the continuity of the germ-plasm seems to me to be still less disproved or even rendered improbable by the facts of the alternation of generations. If the germ-plasm may pass on from the egg into certain somatic cells of an individual, and if it can be further transmitted along certain lines, there is no difficulty in supposing that it may be transmitted through a second, third, or through any number of individuals produced from the former by budding. In fact, in the Hydroids, on which my theory of the continuity of the germ-plasm has been chiefly based, alternation of generations is the most important means of propagation.
II. The Significance of the Polar Bodies
We have already seen that the specific nature of a cell depends upon the molecular structure of its nucleus; and it follows from this conclusion that my theory is further, and as I believe strongly, supported, by the phenomenon of the expulsion of polar bodies, which has remained inexplicable for so long a time.
For if the specific molecular structure of a cell-body is caused and determined by the structure of the nucleoplasm, every kind of cell which is histologically differentiated must have a specific nucleoplasm. But the egg-cell of most animals, at any rate during the period of growth, is by no means an indifferent cell of the most primitive type. At such a period its cell-body has to perform quite peculiar and specific functions; it has to secrete nutritive substances of a certain chemical nature and physical constitution, and to store up this food-material in such a manner that it may be at the disposal of the embryo during its development. In most cases the egg-cell also forms membranes which are often characteristic of particular species of animals. The growing egg-cell is therefore histologically differentiated: and in this respect resembles a somatic cell. It may perhaps be compared to a gland-cell, which does not expel its secretion, but deposits it within its own substance[141 - [Such gland-cells are known in both animals and plants. See W. Gardiner and Tokutaro Ito, On the structure of the mucilage-secreting cells of Blechnum occidentale L., and Osmunda regalis L., ‘Annals of Botany,’ vol. i. p. 49.—S. S.]]. To perform such specific functions it requires a specific cell-body, and the latter depends upon a specific nucleus. It therefore follows that the growing egg-cell must possess nucleoplasm of specific molecular structure, which directs the above-mentioned secretory functions of the cell. The nucleoplasm of histologically differentiated cells may be called histogenetic nucleoplasm, and the growing egg-cell must contain such a substance, and even a certain specific modification of it. This nucleoplasm cannot possibly be the same as that which, at a later period, causes embryonic development. Such development can only be produced by true germ-plasm of immensely complex constitution, such as I have previously attempted to describe. It therefore follows that the nucleus of the egg-cell contains two kinds of nucleoplasm:—germ-plasm and a peculiar modification of histogenetic nucleoplasm, which may be called ovogenetic nucleoplasm. This substance must greatly preponderate in the young egg-cell, for, as we have already seen, it controls the growth of the latter. The germ-plasm, on the other hand, can only be present in minute quantity at first, but it must undergo considerable increase during the growth of the cell. But in order that the germ-plasm may control the cell-body, or, in other words, in order that embryonic development may begin, the still preponderating ovogenetic nucleoplasm must be removed from the cell. This removal takes place in the same manner as that in which differing nuclear substances are separated during the ontogeny of the embryo: viz. by nuclear division, leading to cell-division. The expulsion of the polar bodies is nothing more than the removal of ovogenetic nucleoplasm from the egg-cell. That the ovogenetic nucleoplasm continues to greatly preponderate in the nucleus up to the very last, may be concluded from the fact that two successive divisions of the latter and the expulsion of two polar bodies appear to be the rule. If in this way a small part of the cell-body is expelled from the egg, the extrusion must in all probability be considered as an inevitable loss, without which the removal of the ovogenetic nucleoplasm cannot be effected.
This is my theory of the significance of polar bodies, and I do not intend to contrast it, in extenso, with the theories propounded by others; for such theories are well known and differ essentially from my own. All writers agree in supposing that something which would be an obstacle to embryonic development is removed from the egg; but opinions differ as to the nature of this substance and the precise reasons for its removal[142 - Thus in 1877 Bütschli thought that ‘the chief significance of the formation of polar bodies lies in the removal of part of the nucleus of the egg, whether this removal is effected by simple expulsion or by the budding of the egg-cell.’ ‘Entwicklungsgeschichtliche Beiträge;’ Zeitschrift für wissenschaftliche Zoologie, Bd. XXIX. p. 237, footnote.]. Some observers (e. g. Minot[143 - C. S. Minot, ‘Account, etc.;’ Proc. Boston Soc. Nat. Hist. vol. xix. p. 165, 1877.], van Beneden, and Balfour) regard the nucleus as hermaphrodite, and assume that in the polar bodies the male element is expelled in order to render the egg capable of fertilization. Others speak of a rejuvenescence of the nucleus, others again believe that the quantity of nuclear substance must be reduced in order to become equal to that of the generally minute sperm-nucleus, and that the proportions for nuclear conjugation are in this way adjusted.
The first view seems to me to be disproved by the fact that male as well as female qualities are transmitted by the egg-cell, while the sperm-cell also transmits female qualities. The germ-plasm of the nucleus of the egg cannot therefore be considered as female, and that of the sperm-nucleus cannot be considered as male: both are sexually indifferent. The last view has been recently formulated by Strasburger, who holds that the quantity of the idioplasm contained in the germ-nucleus must be reduced by one half, and that a whole nucleus is again produced by conjugation with the sperm-nucleus. Although I believe that the fundamental idea underlying this hypothesis is perfectly correct, viz. that the influence of each nucleus is as largely dependent upon its quantity as upon its quality, I must raise the objection that the decrease in quantity is not the explanation of the expulsion of polar bodies. The quantity of idioplasm contained in the germ-nucleus is, as a matter of fact, not reduced by one-half but by three-fourths, for two divisions take place one after the other. Thus by conjugation with the sperm-nucleus, which we may assume to be of the same size as the germ-nucleus, a nucleus is produced which can only contain half as much idioplasm as was present in the original germ-nucleus, before division. Strasburger’s view leaves unexplained the question why the size of the germ-nucleus, before the expulsion of polar bodies, was thus twice as large; and even if we neglect the theory of ovogenetic nucleoplasm and assume that this larger nucleus was entirely made up of germ-plasm, it must be asked why the egg did not commence segmentation earlier. The theory which explains the sperm-cell as the vitalizing principle which starts embryonic development, like the spark which kindles the gunpowder, would indeed answer this question in a very simple manner. But Strasburger does not accept this theory, and holds, as I do, a very different view, which will be explained later on.