We have now to inquire whether complete eye-spots – such as those of the Chærocampa larvæ – have any significance at all, and whether they are of biological importance. It is clear at starting, that these spots do not belong to that class of markings which make their possessors more difficult of detection; they have rather the opposite effect.
We might thus be disposed to class ocellated caterpillars with those “brightly coloured” species which, like the Heliconinæ and Danainæ among butterflies, possess a disgusting taste, and which to a certain extent bear the signal of their distastefulness in their brilliant colours. But even if I had not found by experiment that our native Chærocampa larvæ were devoured by birds and lizards, and that they are not therefore distasteful to these insect persecutors, from the circumstance that these caterpillars are all protectively coloured, it could have been inferred that they do not belong to this category. It has been found that all adaptively coloured caterpillars are eaten, and one and the same species cannot possibly be at the same time inconspicuously (adaptively) and conspicuously coloured; the one condition excludes the other.
What other significance can eye-spots possess than that of making the insects conspicuous? Had we to deal with sexually mature forms, we should, in the first place, think of the action of sexual selection, and should regard these spots as objects of taste, like the ocelli on the feathers of the peacock and argus-pheasant. But we are here concerned with larvæ, and sexual selection is thus excluded.
The eye-spots must therefore possess some other significance, or else they are of no importance at all to the life of the insect, and are purely “morphological characters;” in which case, supposing this could be proved, they would owe their existence exclusively to forces innate in the organism itself – a view which very closely approaches the admission of a phyletic vital force.
I am of opinion, however, that eye-spots certainly possess a biological value as a means of terrifying – they belong to that numerous class of characters which occur in the most diverse groups of animals, and which serve the purpose of making their possessors appear as alarming as possible.
The caterpillars of the Sphingidæ are known to behave themselves in different manners when attacked. Some species, such, for instance, as Sphinx Ligustri and Smerinthus Ocellatus, on the approach of danger assume the so-called Sphinx attitude; if they are then actually seized, they dash themselves madly to right and left, by this means not only attempting to get free, but also to terrify their persecutor. This habit frequently succeeds with men, and more especially with women and children; perhaps more easily in these cases than with their experienced foes, birds.
The ocellated Chærocampa larvæ behave differently. They remain quiet on being attacked, and do not put on a Sphinx-like attitude, but only withdraw the head and three small front segments into the large fourth segment, which thus becomes much swollen, and is on this account taken for the head of the insect by the inexperienced.[145 - [For Mr. J. P. Mansel Weale’s remarks on the habits of certain ocellated S. African Sphinx-larvæ see note 129 (#cn_132), p. 290 (#Page_290). R.M.]] Now the large eye-spots are situated on the fourth segment, and it does not require much imagination to see in such a caterpillar an alarming monster with fiery eyes, especially if we consider the size which it must appear to an enemy such as a lizard or small bird. Fig. 28 represents the larva of C. Porcellus in an attitude of defence, although but imperfectly, since the front segments can be still more withdrawn.
These facts and considerations do not, however, amount to scientific demonstration, and I therefore made a series of experiments, in order to determine whether these caterpillars did actually frighten small birds. The first experiment proved but little satisfactory. A jay, which had been domesticated for years, to which I threw a caterpillar of Chærocampa Elpenor, did not give the insect any time for manœuvring, but killed it immediately by a strong blow with its bill. This bird had been tame for years, and was in the habit of pecking at everything thrown to him. Perhaps a wild jay (Garrulus Glandarius) would have treated the insect differently, but it is hardly possible that such a large and courageous bird would have much respect for our native caterpillars. I now turned to wild birds. A large brown Elpenor larva was placed in the food-trough of an open fowl-house from which the fowls had been removed. A flock of sparrows and chaffinches (Fringilla Domestica and Cœlebs) soon flew down from the neighbouring trees, and alighted near the trough to pick up stray food in their usual manner. One bird soon flew on to the edge of the trough, and was just about to hop into it when it caught sight of the caterpillar, and stood jerking its head from side to side, but did not venture to enter. Another bird soon came, and behaved in a precisely similar manner; then a third, and a fourth; others settled on the perch over the trough, and a flock of ten or twelve were finally perched around. They all stretched their heads and looked into the trough, but none flew into it.
I now made the reverse experiment, by removing the caterpillar and allowing the birds again to assemble, when they hopped briskly into the trough.
I often repeated this experiment, and always with the same result. Once it could be plainly seen that it was really fear and not mere curiosity that the birds showed towards the caterpillar. The latter was outside the trough amongst scattered grains of food, so that from one side it was concealed by the trough. A sparrow flew down obliquely from above, so that at first it could not see the caterpillar, close to which it alighted. The instant it caught sight of the insect, however, it turned in evident fright and flew away.
Of course these experiments do not prove that the larger insectivorous birds are also afraid of these caterpillars. Although I have not been able to experiment with such birds, I can certainly prove that even fowls have a strong dislike to these insects. I frequently placed a large Elpenor larva in the poultry yard, where it was soon discovered, and a fowl would run hastily towards it, but would draw back its head just when about to give a blow with the bill, as soon as it saw the caterpillar closely. The bird would now run round the larva irresolutely in a circle – the insect in the meantime assuming its terrifying attitude – and stretching out its head would make ten or twenty attempts to deal a blow with its bill, drawing back again each time. All the cocks and hens acted in a similar manner, and it was often five or ten minutes before one particularly courageous bird would give the first peck, which would soon be followed by a second and third, till the caterpillar, appearing palatable, would finally be swallowed.
These experiments were always made in the presence of several persons, in order to guard myself against too subjective an interpretation of the phenomena; but they all invariably considered the conduct of the birds to be as I have here represented it.[146 - [Some experiments with the caterpillar of C. Elpenor, confirming these results, have been made by Lady Verney. See “Good Words,” Dec. 1877, p. 838. R.M.]]
If it be admitted that the ocelli of caterpillars are thus means of exciting terror, the difficulty of their occurring in protectively coloured species at once vanishes. They do not diminish the advantage of the adaptive colouring, because they do not make the caterpillars conspicuous, or at least any more easily visible at a distance, excepting when the insects have assumed their attitude of alarm. But these markings are of use when, in spite of protective colouring, the larva is attacked by an enemy. The eye-spots accordingly serve the caterpillar as a second means of defence, which is resorted to when the protective colouring has failed.
By this it must not be understood that the ocelli of the Chærocampa larvæ invariably possess only this, and no other significance for the life of the insect. Every pattern can be conceived to render its possessor in the highest degree conspicuous by strongly contrasted and brilliant colouring, so that it might be anticipated that perfect eye-spots in certain unpalatable species would lose their original meaning, and instead of serving for terrifying become mere signals of distastefulness. This is perhaps the case with Chærocampa Tersa (Fig. 35), the numerous eye-spots of which make the insect easily visible. Without experimenting on this point, however, no certain conclusion can be ventured upon, and it may be equally possible that in this case the variegated ocelli with bright red nuclei resemble the blossoms of the food-plant (Spermacoce Hyssopifolia).[147 - [The eye-spots on Ch. Nerii have thus been supposed by some observers to be imitations of the flowers of the periwinkle, one of its food-plants. See, for instance, Sir John Lubbock’s “Scientific Lectures,” p. 51. R.M.]] I here mention this possibility only in order to show how an inherited form of marking, even when as well-defined and complicated as in the present case, may, under certain circumstances, be turned in quite another direction by natural selection, for the benefit of its possessor. Just in the same manner one and the same organ, such, for instance, as the limb of a crustacean, may, in the course of phyletic development, perform very different functions – first serving for locomotion, then for respiration, then for reproduction or oviposition, and finally for the acquisition of food.
I now proceed to the consideration of the biological value of incomplete eye-spots, or, as I have termed them, ring-spots. Are these also means of terrifying, or are they only signals of distastefulness?
I must at the outset acknowledge that on this point I am able to offer but a very undecided explanation. The decision is only to be arrived at by experiments conducted with each separate species upon which one desires to pronounce judgment. It is not here legitimate to draw analogical inferences, and to apply one case to all, since it is not only possible, but very probable, that the biological significance of ring-spots changes in different species. Nothing but a large series of experiments could completely establish this. Unfortunately I have hitherto failed in obtaining materials for this purpose. I would have deferred the publication of this essay for a year, could I have foreseen with certainty that such materials would have been forthcoming in sufficient quantity during the following summer; but this unfortunately depends very much upon chance, and I believed that a preliminary conclusion would be preferable to uncertainty. Perhaps some entomologist to whom materials are more easily accessible, may, by continuing these experiments, accomplish this object.
The experiments hitherto made by other observers, are not sufficient for deciding the question under consideration. Weir,[148 - “On Insects and Insectivorous Birds,” Trans. Ent. Soc. 1869, p. 21.] as is well known, showed that certain brightly coloured and conspicuous larvæ were refused by insectivorous birds; and Butler[149 - Ibid., p. 27.] proved the same for lizards and frogs. These experiments are unfortunately so briefly described, that in no case is the species experimented with mentioned by name, so that we do not know whether there were any Sphinx caterpillars among them.[150 - [Messrs. Weir and Butler inform me that they have not experimented with Sphinx-larvæ. R.M.]] I have likewise experimented in this direction with lizards, in order to convince myself of the truth of the statement that (1) there are caterpillars which are not eaten on account of their taste, and (2) that such larvæ possess bright colours. I obtained positive, and on the whole, very decided results. Thus, the common orange and blue striped caterpillars of Bombyx Neustria enjoyed complete immunity from the attacks of lizards, whilst those of the nearly allied Eriogaster Lanestris and L. Pini were devoured, although not exactly relished. That the hairiness is not the cause of their being unpalatable, is shown by the fact that L. Pini is much more hairy than B. Neustria. The very conspicuous yellow and black ringed caterpillar of Euchelia Jacobææ gave also most decided results. I frequently placed this insect in a cage with Lacerta Viridis, but they would never even notice them, and I often saw the caterpillars crawl over the body, or even the head of the lizards, without being snapped at. On every occasion the larvæ remained for several days with the lizards without one being ever missed. The reptiles behaved in a precisely similar manner with respect to the moth of E. Jacobææ, not one of which was ever touched by them. The yellow and black longitudinally striped caterpillars of Pygæra Bucephala were also avoided, and so were the brightly coloured larvæ of the large cabbage white (Pieris Brassicæ), which when crushed give a disagreeable odour. This last property clearly shows why lizards reject this species as distasteful. Both caterpillar and butterfly possess a blood of a strong yellow colour and oily consistency, in which, however, I could not detect such a decided smell as is emitted by that of the Heliconinæ and Danainæ.[151 - [It appears that the nauseous character of these last butterflies is to a certain extent retained after death, as I found that in an old collection which had been destroyed by mites, the least mutilated specimens were species of Danais and Euplæa, genera which are known to be distasteful when living, and to serve as models for mimicry. See Proc. Ent. Soc. 1877, p. xii. R.M.]]
I next made the experiment of placing before a lizard a caterpillar as much as possible like that of E. Jacobææ. Half grown larvæ of Bombyx Rubi likewise possess golden yellow (but narrower) transverse rings on a dark ground, and they are much more hairy than those of E. Jacobææ. The lizard first applied its tongue to this caterpillar and then withdrew it, so that I believed it would also be avoided; nevertheless it was subsequently eaten. The caterpillars of Saturnia Carpini were similarly devoured in spite of their bristly hairs, and likewise cuspidate larvæ (Dicranura Vinula), notwithstanding their extraordinary appearance and their forked caudal horn.[152 - [This bears out the view expressed in a previous note 129 (#cn_132), p. 290 (#Page_290), that the grotesque attitude and caudal tentacles are more for protection against ichneumons than against larger foes. R.M.]] These lizards were by no means epicures, but consumed large numbers of earth-worms, slugs, and great caterpillars, and once a specimen of the large and powerfully biting Orthopteron, Decticus Verucivorus. Creatures which possessed a strongly repugnant odour were, however, always rejected, this being the case with the strongly smelling beetle, Chrysomela Populi, as also with the stinking centipede, Iulus Terrestris, whilst the inodorous Lithobius Forficatus was greedily eaten. I will call particular attention to these last facts, because they favour the supposition that with rejected caterpillars a disgusting odour – although perhaps not always perceptible by us – is the cause of their being unpalatable.
Striking colours are of course only signals of distastefulness, and the experiment with Bombyx Rubi shows that the lizards were from the first prejudiced against such larvæ, the prejudice only being overcome on actually trying the specimen offered. A subsequent observation which I made after arriving at this conclusion, is most noteworthy. After the lizard had learnt by experience that there might be not only distasteful caterpillars (E. Jacobææ), but also palatable ones banded with black and yellow (B. Rubi), it sometimes tasted the Jacobææ larvæ, as if to convince itself that the insect was actually as it appeared to be, viz., unpalatable!
A striking appearance combined with a very perceptible and penetrating odour is occasionally to be met with, as in the caterpillar of the common Swallow-tail, Papilio Machaon. I have never seen a lizard make the slightest attempt to attack this species. I once placed two large specimens of this caterpillar in the lizard vivarium, where they remained for five days, and finally pupated unharmed on the side of the case.
I have recorded these experiments, although they do not thus far relate to Sphinx-caterpillars, with the markings of which we are here primarily concerned, because it appeared to me in the first place necessary to establish by my own experiments that signals of distastefulness did occur in caterpillars.
I now come to my unfortunately very meagre experience with Deilephila larvæ, with only two species of which have I been able to experiment, viz., D. Galii and Euphorbiæ.
The first of these was constantly rejected. Two large caterpillars, one of the black and the other of the yellow variety, were left for twelve hours in the lizard vivarium, without being either examined or touched. It thus appears that D. Galii is a distasteful morsel to lizards; and the habits of the caterpillar are quite in accordance with this, since it does not conceal itself, but rests fully exposed by day on a stem, so that it can scarcely escape being detected. It is almost as conspicuous as D. Euphorbiæ.
I was much surprised to find, however, that this last species was not rejected by lizards. On placing a large caterpillar, six to seven centimeters long, in the vivarium, the lizard immediately commenced to watch it, and as soon as it began to crawl about, seized it by the head, and, after shaking it violently, commenced to swallow it. In spite of its vigorous twisting and turning, the insect gradually began to disappear, amidst repeated shakings; and in less than five minutes was completely swallowed.[153 - These experiments, as already mentioned above, were not made with the common German lizard (Lacerta Stirpium), but with the large South European Lacerta Viridis.] With regard to lizards, therefore, the prominent ring-spots of this larva are not effective as a means of alarm, nor are they considered as a sign of distastefulness.
Unfortunately I have not hitherto been able to make any experiments with birds. It would be rash to conclude from the experience with lizards that ring-spots were of no biological value. There is scarcely any one means of protection which can render its possessor secure against all its foes. The venom of the most poisonous snakes does not protect them from the attack of the secretary bird (Serpentarius Secretarius) and serpent eagle (Spilornis Cheela); and the adder, as is well known, is devoured by hedgehogs without hesitation. It must therefore be admitted that many species which are protected by distastefulness, may possess certain foes against which this quality is of no avail. Thus, it cannot be said that brightly coloured caterpillars, which are not eaten by birds and lizards, are also spared by ichneumons. It is readily conceivable therefore, that the larva of D. Euphorbiæ may not be unpalatable to lizards, because they swallow it whole; whilst it is perhaps distasteful to birds, because they must hack and tear in order to swallow it.
From these considerations it still appears most probable to me that D. Euphorbiæ, and the nearly allied D. Dahlii and Mauritanica, bear conspicuous ring-spots as signs of their being unpalatable to the majority of their foes. The fact that these species feed on poisonous Euphorbiaceæ, combined with their habit of exposing themselves openly by day, so as to be easily seen at a distance, may perhaps give support to this view. As these insects are not protectively coloured, this habit would long ago have led to their extermination; instead of this, however, we find that in all situations favourable to their conditions of life they are among the commonest of the Sphingidæ.
Thus, D. Euphorbiæ occurs in large numbers both in South and North Germany (Berlin); and Dr. Staudinger informs me that in Sardinia the larvæ of D. Dahlii were brought to him by baskets full.
But if the conspicuous ring-spots (combined of course with the other bright colours) may be regarded as signals of distastefulness in many species of Deilephila, this by no means excludes the possibility that in some species these markings play another part, and are effective as a means of alarm. It even appears conceivable to me that in one and the same caterpillar they may play both parts against different foes, and it would certainly be of interest to confirm or refute this supposition by experiment.
In the light yellow variety of the caterpillar of D. Galii the ring-spots may serve as means of alarm, and still more so in that of D. Nicæa, the resemblance of which to a snake has struck earlier observers.[154 - Thus, Boisduval states of this caterpillar, which in Provence lives on Euphorbia esula and allied species: – “Its resemblance to a serpent, and its brilliant colour, permit of its being easily discovered.” This was written in 1843, long before natural selection was thought of.]
In those species of Deilephila which conceal themselves by day, the ring-spots cannot be considered as signals of distastefulness, and they must therefore have some other meaning. As examples of this class may be mentioned D. Vespertilio, which is protectively coloured both in the young and in the adult stages; and likewise D. Hippophaës, in which this habit of concealment is associated with adaptive colouring. In the case of the first-named species, it appears possible that the numerous large ring-spots may serve to alarm small foes, but the truth of this supposition could only be decided by experiment. In D. Hippophaës, on the other hand, such an interpretation must be at once rejected, since most individuals possess but a single ring-spot, which shows no resemblance whatever to an eye.
I long sought in vain for the meaning of this ring-spot, the discovery of which would in this particular case be of the greatest value, because we have here obviously the commencement of the whole development of ring-spots before us – the initial stage from which the marking of all the other species of Deilephila has proceeded.
I believe that I have now found the correct answer to this riddle, but unfortunately at a period of the year when I am unable to prove it experimentally. I consider that the ring-spots are crude imitations of the berries of the food-plant. The latter are orange-red, and exactly of the same colour as the spots; the agreement in colour between the latter and the berries is quite as close as that between the leaves and the general colouring of the caterpillar. I know of no species which more closely resembles the colour of the leaves of its food-plant, the dark upper side and light under side corresponding in the leaves and caterpillars. The colour of the Hippophae is not an ordinary green, but a grey-green, which shade also occurs, although certainly but rarely, in the larvæ. I may expressly state that I have repeatedly shown to people as many as six to eight of the large caterpillars on one buckthorn branch, without their being able at once to detect them. It is not therefore mere supposition, but a fact, that this species is protected by its general colouring. At first the orange-red spots appear rather to diminish this protection – at least when the insects are placed on young shoots bearing no berries. But since at the same time when the berries become red (end of July and the beginning of August) the caterpillars are in their last stage of development (i. e. possess red spots), it appears extremely probable that these spots are vague representations of the berries. For the same reason that these caterpillars have acquired the habit of feeding only at dusk and during the morning twilight, or at night, and of concealing themselves by day, it must be advantageous for them to have the surface of their large bodies not only divided by white stripes, but also interrupted in yet another manner. How could this be better effected than by two spots which, in colour and position, represent the grouping of the red berries on the branches? When feeding, the insect always rests with the hind segments on a branch, the front segments only being more or less raised and held parallel to the leaves; the red spots thus always appear on the stem, where the berries are likewise situated. It might indeed be almost supposed that the small progress which the formation of secondary ring-spots on the other segments has made up to the present time, is explicable by the fact that such berry-like spots on other portions of the caterpillar would be rather injurious than useful.
It may, however, be asked how an imitation of red berries, which are eaten by birds just as much as other berries, can be advantageous to a caterpillar, since by this means it would rather attract the attention of its enemies?
Two answers can be given to this. In the first place, the berries are so numerous on every plant that there is but a very small chance of the smaller and less conspicuous berry-spots catching the eye of a bird before the true berries; and, secondly, the latter, although beginning to turn red when the caterpillars are feeding, do not completely ripen till the autumn, when the leaves are shed, and the yellowish-red clusters of berries can be seen at a distance. The caterpillar, however, pupates long before this time.
I have considered this case in such detail because it appears to me of special importance. It is the only instance which teaches us that the rows of ring-spots of the Deilephila larvæ proceed from one original pair – the only instance which permits of the whole course of development being traced to its origin. Were it possible to arrive at the causes of the formation of these spots, their original or primary significance would thereby be made clear.
I will now briefly summarise the results of the investigation of the biological value of the Deilephila ring-spots.
In the known species of the genus now existing these spots have different meanings.
In some species (certainly in Galii, and probably in Euphorbiæ and Mauritanica) the conspicuous ring-spots serve as signals of distastefulness for certain enemies (not for all).
In a second group of species they serve as a means of alarm, like the eye-spots of the Chærocampa larvæ (Nicæa? light form of Galii?).
Finally, in a third group, of which I can at present only cite Hippophaës, they act as an adaptive resemblance to a portion of a plant, and enhance the efficacy of the protective colouring.
5. Subordinate Markings.– If, from the foregoing considerations, it appears that the three chief elements of the Sphinx-markings – longitudinal and oblique stripes, and spot formations – are not purely morphological characters, but have a very decided significance with respect to their possessors, there should be no difficulty in referring the whole of the markings of the Sphingidæ to the action of natural selection, supposing that these three kinds of marking were the only ones which actually occurred.
In various species, however, there appear other patterns, which I have comprised under the term “subordinate markings,” some of which I will select, for the purpose of showing the reasons which permit of their being thus designated.
I ascribe to this category, for example, that fine network of dark longitudinal streaks which often extends over the whole upper side of the caterpillar, and which is termed the “reticulation.” This character is found chiefly in the adult larvæ of Chærocampa, being most strongly pronounced in the brown varieties: it occurs also in Deilephila Vespertilio, Pterogon Œnotheræ, and Sphinx Convolvuli. As far as I know, it is only associated with adaptive colours, and indeed occurs only in those caterpillars which rest periodically at the base of their food-plants among the dead leaves and branches. I do not consider this reticulation to be a distinct imitation, but only as one of the various means of breaking up the large uniform surface of the caterpillar so as to make it present inequalities, and thus render it less conspicuous. There can be no doubt as to the dependence of this character upon natural selection.
There is, however, a second group of markings, which must be referred to another origin. To this group, for instance, belong those light dots in Chærocampa Porcellus and Elpenor which have been termed “dorsal spots.” I know of no other explanation for these than that they are the necessary results of other new formations, and depend on correlation (Darwin), or, as I may express it, they are the result of the action of the law governing the organization of these species.
As long as we are confined to the mere supposition that the character in question may be the outward expression of an innate law of growth, it is permissible to attempt to show that a quite similar formation in another species depends upon such a law.
Many of the dark specimens of Sphinx Convolvuli show whitish dots on segments six to eleven, one being situated on the front edge of each of these segments, at the height of the completely vanished subdorsal line (Fig. 52). These spots vary much in size, lightness, and sharpness of definition. Now it might be difficult to attribute any biological significance to this character, but its origin becomes clear on examining light specimens in which the oblique white stripes are distinct on the sides and the subdorsal line is retained at least on the five or six anterior segments. It can then be seen that the spots are located at the points of intersection of the subdorsal and the oblique stripes (Fig. 16, Pl. III.), and they can accordingly be explained by the tendency to the deposition of light pigment being twice as great in these positions as in other portions of the two systems of light lines. Light spots are thus formed when the lines which cross at these points are partially or completely extinct throughout their remaining course.
A marking is therefore produced in this case by a purely innate law of growth – by the superposition of two ancient characters now rudimentary. Many other unimportant details of marking must be regarded as having been produced in a similar manner, although it may not be possible to prove this with respect to every minute spot and stripe. The majority of “subordinate markings” depend on the commingling of inherited, but now meaningless, characters with newly acquired ones.
It would be quite erroneous to attribute to natural selection only those characters which can be demonstrated to still possess a biological value in the species possessing them. They may be equally due to heredity. Thus, it is quite possible that the faint and inconspicuous ring-spots of Deilephila Vespertilio are now valueless to the life of the species – they may be derived from an ancestral form, and have not been eliminated by natural selection simply because they are harmless. I only mention this as a hypothetical case.
In the case of markings of the second class, i. e. oblique stripes, a transference to later phyletic stages can be demonstrated, although the stripes thereby lose their original biological value. Thus, the Chærocampa larvæ, when they were green throughout their whole life and adapted to the leaves, appear to have all possessed light oblique stripes in imitation of the leaf-ribs. All the species of the older type of colouring and marking, such as Chærocampa Syriaca (Fig. 29) and Darapsa Chœrilus (Fig. 34), and also the light green young forms of C. Elpenor (Fig. 20), and Porcellus (Figs. 25 and 26), show these oblique stripes. In these last species the foliage imitation is abandoned at a later stage, and a dark brown, or blackish-brown, ground-colour acquired. Nevertheless the oblique stripes do not disappear, but show themselves – in the fourth stage especially, and sometimes in the fifth – as distinct dirty yellow stripes, although not so sharply defined as in the earlier stages. These persistent stripes, in accordance with their small biological value, are very variable, since they are only useful in so far as they help to break up the large surface presented by the caterpillar, and are of no value as imitations of surrounding objects.
The oblique stripes of Sphinx Convolvuli offer a precisely similar case; and it may be safely predicted that the young forms of this species would possess sharply defined light oblique stripes, since more or less distinct remnants of these markings occur in all the adult larvæ, and especially in the green form. The entire pattern of this caterpillar depends essentially on the commingling of characters persisting from an earlier period, i. e. of residues of the subdorsal and oblique stripes, both these markings being extraordinarily variable. The black reticulation was added to the ground-colour as a new means of adaptation, this character appearing only in the phyletically younger brown form, and being entirely absent, or only faintly indicated, in the older green variety.