It is clear that in such animals as insects we can only speak figuratively of normal death, if we mean by this an end which is not due to accident. In these animals an accidental end is the rule, and is therefore, strictly speaking, normal [See Note 9 (#x9_pgepubid00016)].
Assuming the truth of the above-mentioned hypothesis as to the causes of normal death, it follows that the number of cell-generations which can proceed from the egg-cell is fixed for every species, at least within certain limits; and this number of cell-generations, if attained, corresponds to the maximum duration of life in the individuals of the species concerned. Shortening of life in any species must depend upon a decrease in the number of successive cell-generations, while conversely, the lengthening of life depends upon an increase in the number of cell-generations over those which were previously possible.
Such changes actually take place in plants. When an annual plant becomes perennial, the change—one in every way possible—can only happen by the production of new shoots, i. e. by an increase in the number of cell-generations. The process is not so obvious in animals, because in them the formation of young cells does not lead to the production of new and visible parts, for the new material is merely deposited in the place of that which is worn out and disappears. Among plants, on the other hand, the old material persists, its cells become lignified, and it is built over by new cells which assume the functions of life.
It is certainly true that the question as to the necessity of death in general does not seem much clearer from this point of view than from the purely physiological one. This is because we do not know why a cell must divide 10,000 or 100,000 times and then suddenly stop. It must be admitted that we can see no reason why the power of cell-multiplication should not be unlimited, and why the organism should not therefore be endowed with everlasting life. In the same manner, from a physiological point of view, we might admit that we can see no reason why the functions of the organism should ever cease.
It is only from the point of view of utility that we can understand the necessity of death. The same arguments which were employed to explain the necessity for as short a life as possible, will with but slight modification serve to explain the common necessity of death[4 - [After reading these proofs Dr. A. R. Wallace kindly sent me an unpublished note upon the production of death by means of natural selection, written by him some time between 1865 and 1870. The note contains some ideas on the subject, which were jotted down for further elaboration, and were then forgotten until recalled by the argument of this Essay. The note is of great interest in relation to Dr. Weismann’s suggestions, and with Dr. Wallace’s permission I print it in full below.‘The Action of Natural Selection in Producing Old Age, Decay, and Death.‘Supposing organisms ever existed that had not the power of natural reproduction, then since the absorptive surface would only increase as the square of the dimensions while the bulk to be nourished and renewed would increase as the cube, there must soon arrive a limit of growth. Now if such an organism did not produce its like, accidental destruction would put an end to the species. Any organism therefore that, by accidental or spontaneous fission, could become two organisms, and thus multiply itself indefinitely without increasing in size beyond the limits most favourable for nourishment and existence, could not be thus exterminated: since the individual only could be accidentally destroyed,—the race would survive. But if individuals did not die they would soon multiply inordinately and would interfere with each other’s healthy existence. Food would become scarce, and hence the larger individuals would probably decompose or diminish in size. The deficiency of nourishment would lead to parts of the organism not being renewed; they would become fixed, and liable to more or less slow decomposition as dead parts within a living body. The smaller organisms would have a better chance of finding food, the larger ones less chance. That one which gave off several small portions to form each a new organism would have a better chance of leaving descendants like itself than one which divided equally or gave off a large part of itself. Hence it would happen that those which gave off very small portions would probably soon after cease to maintain their own existence while they would leave a numerous offspring. This state of things would be in any case for the advantage of the race, and would therefore, by natural selection, soon become established as the regular course of things, and thus we have the origin of old age, decay, and death; for it is evident that when one or more individuals have provided a sufficient number of successors they themselves, as consumers of nourishment in a constantly increasing degree, are an injury to those successors. Natural selection therefore weeds them out, and in many cases favours such races as die almost immediately after they have left successors. Many moths and other insects are in this condition, living only to propagate their kind and then immediately dying, some not even taking any food in the perfect and reproductive state.’—E. B. P.]].
Let us imagine that one of the higher animals became immortal; it then becomes perfectly obvious that it would cease to be of value to the species to which it belonged. Suppose that such an immortal individual could escape all fatal accidents, through infinite time,—a supposition which is of course hardly conceivable. The individual would nevertheless be unable to avoid, from time to time, slight injuries to one or another part of its body. The injured parts could not regain their former integrity, and thus the longer the individual lived, the more defective and crippled it would become, and the less perfectly would it fulfil the purpose of its species. Individuals are injured by the operation of external forces, and for this reason alone it is necessary that new and perfect individuals should continually arise and take their place, and this necessity would remain even if the individuals possessed the power of living eternally.
From this follows, on the one hand, the necessity of reproduction, and, on the other, the utility of death. Worn-out individuals are not only valueless to the species, but they are even harmful, for they take the place of those which are sound. Hence by the operation of natural selection, the life of our hypothetically immortal individual would be shortened by the amount which was useless to the species. It would be reduced to a length which would afford the most favourable conditions for the existence of as large a number as possible of vigorous individuals, at the same time.
If by these considerations death is shown to be a beneficial occurrence, it by no means follows that it is to be solely accounted for on grounds of utility. Death might also depend upon causes which lie in the nature of life itself. The floating of ice upon water seems to us to be a useful arrangement, although the fact that it does float depends upon its molecular structure and not upon the fact that its doing so is of any advantage to us. In like manner the necessity of death has been hitherto explained as due to causes which are inherent in organic nature, and not to the fact that it may be advantageous.
I do not however believe in the validity of this explanation; I consider that death is not a primary necessity, but that it has been secondarily acquired as an adaptation. I believe that life is endowed with a fixed duration, not because it is contrary to its nature to be unlimited, but because the unlimited existence of individuals would be a luxury without any corresponding advantage. The above-mentioned hypothesis upon the origin and necessity of death leads me to believe that the organism did not finally cease to renew the worn-out cell material because the nature of the cells did not permit them to multiply indefinitely, but because the power of multiplying indefinitely was lost when it ceased to be of use.
I consider that this view, if not exactly proved, can at any rate be rendered extremely probable.
It is useless to object that man (or any of the higher animals) dies from the physical necessity of his nature, just as the specific gravity of ice results from its physical nature. I am quite ready to admit that this is the case. John Hunter, supported by his experiments on anabiosis, hoped to prolong the life of man indefinitely by alternate freezing and thawing; and the Veronese Colonel Aless. Guaguino made his contemporaries believe that a race of men existed in Russia, of which the individuals died regularly every year on the 27th of November, and returned to life on the 24th of the following April. There cannot however be the least doubt, that the higher organisms, as they are now constructed, contain within themselves the germs of death. The question however arises as to how this has come to pass; and I reply that death is to be looked upon as an occurrence which is advantageous to the species as a concession to the outer conditions of life, and not as an absolute necessity, essentially inherent in life itself.
Death, that is the end of life, is by no means, as is usually assumed, an attribute of all organisms. An immense number of low organisms do not die, although they are easily destroyed, being killed by heat, poisons, &c. As long, however, as those conditions which are necessary for their life are fulfilled, they continue to live, and they thus carry the potentiality of unending life in themselves. I am speaking not only of the Amoebae and the low unicellular Algae, but also of far more highly organized unicellular animals, such as the Infusoria.
The process of fission in the Amoeba has been recently much discussed, and I am well aware that the life of the individual is generally believed to come to an end with the division which gives rise to two new individuals, as if death and reproduction were the same thing. But this process cannot be truly called death. Where is the dead body? what is it that dies? Nothing dies; the body of the animal only divides into two similar parts, possessing the same constitution. Each of these parts is exactly like its parent, lives in the same manner, and finally also divides into two halves. As far as these organisms are concerned, death can only be spoken of in the most figurative sense.
There are no grounds for the assumption that the two halves of an Amoeba are differently constituted internally, so that after a time one of them will die while the other continues to live. Such an idea is disproved by a recently discovered fact. It has been noticed in Euglypha (one of the Foraminifera) and in other low animals of the same group, that when division is almost complete, and the two halves are only connected by a short strand, the protoplasm of both parts begins to circulate, and for some time passes backwards and forwards between the two halves. A complete mingling of the whole substance of the animal and a resulting identity in the constitution of each half is thus brought about before the final separation [See Note 10 (#x9_pgepubid00017)].
The objection might perhaps be raised that, if the parent animal does not exactly die, it nevertheless disappears as an individual. I cannot however let this pass unless it is also maintained that the man of to-day is no longer the same individual as the boy of twenty years ago. In the growth of man, neither structure nor the components of structure remain precisely the same; the material is continually changing. If we can imagine an Amoeba endowed with self-consciousness, it might think before dividing ‘I will give birth to a daughter,’ and I have no doubt that each half would regard the other as the daughter, and would consider itself to be the original parent. We cannot however appeal to this criterion of personality in the Amoeba, but there is nevertheless a criterion which seems to me to decide the matter: I refer to the continuity of life in the same form.
Now if numerous organisms, endowed with the potentiality of never-ending life, have real existence, the question arises as to whether the fact can be understood from the point of view of utility. If death has been shown to be a necessary adaptation for the higher organisms, why should it not be so for the lower also? Are they not decimated by enemies? are they not often imperfect? are they not worn out by contact with the external world? Although they are certainly destroyed by other animals, there is nothing comparable to that deterioration of the body which takes place in the higher organisms. Unicellular animals are too simply constructed for this to be possible. If an infusorian is injured by the loss of some part of its body, it may often recover its former integrity, but if the injury is too great it dies. The alternative is always perfect integrity or complete destruction.
We may now leave this part of the subject, for it is obvious that normal death, that is to say, death which arises from internal causes, is an impossibility among these lower organisms. In those species at any rate in which fission is accompanied by a circulation of the protoplasm of the parent, the two halves must possess the same qualities. Since one of them is endowed with a potentiality for unending life, and must be so endowed if the species is to persist, it is clear that the other exactly similar half must be endowed with equal potentiality.
Let us now consider how it happened that the multicellular animals and plants, which arose from unicellular forms of life, came to lose this power of living for ever.
The answer to this question is closely bound up with the principle of division of labour which appeared among multicellular organisms at a very early stage, and which has gradually led to the production of greater and greater complexity in their structure.
The first multicellular organism was probably a cluster of similar cells, but these units soon lost their original homogeneity. As the result of mere relative position, some of the cells were especially fitted to provide for the nutrition of the colony, while others undertook the work of reproduction. Hence the single group would come to be divided into two groups of cells, which may be called somatic and reproductive—the cells of the body as opposed to those which are concerned with reproduction. This differentiation was not at first absolute, and indeed it is not always so to-day. Among the lower Metazoa, such as the polypes, the capacity for reproduction still exists to such a degree in the somatic cells, that a small number of them are able to give rise to a new organism,—in fact new individuals are normally produced by means of so-called buds. Furthermore, it is well known that many of the higher animals have retained considerable powers of regeneration; the salamander can replace its lost tail or foot, and the snail can reproduce its horns, eyes, etc.
As the complexity of the Metazoan body increased, the two groups of cells became more sharply separated from each other. Very soon the somatic cells surpassed the reproductive in number, and during this increase they became more and more broken up by the principle of the division of labour into sharply separated systems of tissues. As these changes took place, the power of reproducing large parts of the organism was lost, while the power of reproducing the whole individual became concentrated in the reproductive cells alone.
But it does not therefore follow that the somatic cells were compelled to lose the power of unlimited cell-production, although in accordance with the law of heredity, they could only give rise to cells which resembled themselves, and belonged to the same differentiated histological system. But as the fact of normal death seems to teach us that they have lost even this power, the causes of the loss must be sought outside the organism, that is to say, in the external conditions of life; and we have already seen that death can be very well explained as a secondarily acquired adaptation. The reproductive cells cannot lose the capacity for unlimited reproduction, or the species to which they belong would suffer extinction. But the somatic cells have lost this power to a gradually increasing extent, so that at length they became restricted to a fixed, though perhaps very large number of cell-generations. This restriction, which implies the continual influx of new individuals, has been explained above as a result of the impossibility of entirely protecting the individual from accidents, and from the deterioration which follows them. Normal death could not take place among unicellular organisms, because the individual and the reproductive cell are one and the same: on the other hand, normal death is possible, and as we see, has made its appearance, among multicellular organisms in which the somatic and reproductive cells are distinct.
I have endeavoured to explain death as the result of restriction in the powers of reproduction possessed by the somatic cells, and I have suggested that such restriction may conceivably follow from a limitation in the number of cell-generations possible for the cells of each organ and tissue. I am unable to indicate the molecular and chemical properties of the cell upon which the duration of its power of reproduction depends: to ask this is to demand an explanation of the nature of heredity—a problem the solution of which may still occupy many generations of scientists. At present we can hardly venture to propose any explanation of the real nature of heredity.
But the question must be answered as to whether the kind and degree of reproductive power resides in the nature of the cell itself, or in any way depends upon the quality of its nutriment.
Virchow, in his ‘Cellular Pathology,’ has remarked that the cells are not only nourished, but that they actively supply themselves with food. If therefore the internal condition of the cell decides whether it shall accept or reject the nutriment which is offered, it becomes conceivable that all cells may possess the power of refusing to absorb nutriment, and therefore of ceasing to undergo further division.
Modern embryology affords us many proofs, in the segmentation of the ovum, and in the subsequent developmental changes, that the causes of the different forms of reproductive activity witnessed in cells lie in the essential nature of the cells themselves. Why does the segmentation of one half of certain eggs proceed twice as rapidly as that of the other half? why do the cells of the ectoderm divide so much more quickly than those of the endoderm? Why does not only the rate, but also the number of cells produced (so far as we can follow them) always remain the same? Why does the multiplication of cells in every part of the blastoderm take place with the exact amount of energy and rapidity necessary to produce the various elevations, folds, invaginations, etc., in which the different organs and tissues have their origin, and from which finally the organism itself arises? There can be no doubt that the causes of all these phenomena lie within the cells themselves; that in the ovum and the cells which are immediately derived from it, there exists a tendency towards a certain determined (I might almost say specific) mode and energy of cell-multiplication. And why should we regard this inherited tendency as confined to the building up of the embryo? why should it not also exist in the young, and later in the mature animal? The phenomena of heredity which make their appearance even in old age afford us proofs that a tendency towards a certain mode of cell-multiplication continues to regulate the growth of the organism during the whole of its life.
The above-mentioned considerations show us that the degree of reproductive activity present in the tissues is regulated by internal causes while the natural death of an organism is the termination—the hereditary limitation—of the process of cell-division, which began in the segmentation of the ovum.
Allow me to suggest a further consideration which may be compared with the former. The organism is not only limited in time, but also in space: it not only lives for a limited period, but it can only attain a limited size. Many animals grow to their full size long before their natural end: and although many fishes, reptiles, and lower animals are said to grow during the whole of their life, we do not mean by this that they possess the power of unlimited growth any more than that of unlimited life. There is everywhere a maximum size, which, as far as our experience goes, is never surpassed. The mosquito never reaches the size of an elephant, nor the elephant that of a whale.
Upon what does this depend? Is there any external obstacle to growth? Or is the limitation entirely imposed from within?
Perhaps you may answer, that there is an established relation between the increase of surface and mass, and it cannot be denied that these relations do largely determine the size of the body. A beetle could never reach the size of an elephant, because, constituted as it is, it would be incapable of existence if it attained such dimensions. But nevertheless the relations between surface and mass do not form the only reason why any given individual does not exceed the average size of its species. Each individual does not strive to grow to the largest possible size, until the absorption from its digestive area becomes insufficient for its mass; but it ceases to grow because its cells cannot be sufficiently nourished in consequence of its increased size. The giants which occasionally appear in the human species prove that the plan upon which man is constructed can also be carried out on a scale which is far larger than the normal one. If the size of the body chiefly depends upon amount of nutriment, it would be possible to make giants and dwarfs at will. But we know, on the contrary, that the size of the body is hereditary in families to a very marked extent; in fact so much so that the size of an individual depends chiefly upon heredity, and not upon amount of food.
These observations point to the conclusion that the size of the individual is in reality pre-determined, and that it is potentially contained in the egg from which the individual developes.
We know further that the growth of the individual depends chiefly upon the multiplication of cells and only to a slight extent upon the growth of single cells. It is therefore clear that a limit of growth is imposed by a limitation in the processes by which cells are increased, both as regards the number of cells produced and the rate at which they are formed. How could we otherwise explain the fact that an animal ceases to grow long before it has reached the physiologically attainable maximum of its species, without at the same time suffering any loss of vital energy?
In many cases at least, the most important duty of an organism, viz. reproduction, follows upon the attainment of full size—a fact which induced Johannes Müller to reject the prevailing hypothesis which explained the death of animals as due to ‘the influences of the inorganic environment, which gradually wear away the life of the individual.’ He argued that, if this were the case, ‘the organic energy of an individual would steadily decrease from the beginning,’ while the facts indicate that this is not so[5 - Johannes Müller, ‘Physiologie,’ Bd. I. p. 31, Berlin, 1840.].
If it is further asked why the egg should give rise to a fixed number of cell-generations, although perhaps a number which varies widely within certain limits, we may now refer to the operation of natural selection upon the relation of surface to mass, and upon other physiological necessities which are peculiar to the species. Because a certain size is the most favourable for a certain plan of organization, the process of natural selection determined that such a size should be within certain variable limits, characteristic of each species. This size is then transmitted from generation to generation, for when once established as normal for the species, the most favourable size is potentially present in the reproductive cell from which each individual is developed.
If this conclusion holds, and I believe that no essential objection can be raised against it, then we have in the limitation in space a process which is exactly analogous to the limitation in time, which we have already considered. The latter limitation—the duration of life—also depends upon the multiplication of cells, the rapid increase of which first gave rise to the characteristic form of the mature body, and then continued at a slower rate. In the mature animal, cell-reproduction still goes on, but it no longer exceeds the waste; for some time it just compensates for loss, and then begins to decline. The waste is not compensated for, the tissues perform their functions incompletely, and thus the way for death is prepared, until its final appearance by one of the three great Atria mortis.
I admit that facts are still wanting upon which to base this hypothesis. It is a pure supposition that senile changes are due to a deficient reproduction of cells: at the same time this supposition gains in probability when we are enabled to reduce the limitations of the organism in both time and space to one and the same principle. It cannot however be asserted under any circumstances that it is a pure supposition that the ovum possesses a capacity for cell-multiplication which is limited both as to numbers produced and rate of production. The fact that each species maintains an average size is a sufficient proof of the truth of this conclusion.
Hitherto I have only spoken of animals and have hardly mentioned plants. I should not have been able to consider them at all, had it not happened that a work of Hildebrand’s [See Note 12 (#x9_pgepubid00019)] has recently appeared, which has, for the first time, provided us with exact observations on the duration of plant-life.
The chief results obtained by this author agree very well with the view which I have brought before you to-day. Hildebrand shows that the duration of life in plants also is by no means completely fixed, and that it may be very considerably altered through the agency of the external conditions of life. He shows that, in course of time, and under changed conditions of life, an annual plant may become perennial, or vice versa. The external factors which influence the duration of life are here however essentially different, as indeed we expect them to be, when we remember the very different conditions under which the animal and vegetable kingdoms exist. During the life of animals the destruction of mature individuals plays a most important part, but the existence of the mature plant is fairly well secured; their chief period of destruction is during youth, and this fact has a direct influence upon the degree of fertility, but not upon the duration of life. Climatic considerations, especially the periodical changes of summer and winter, or wet and dry seasons, are here of greater importance.
It must then be admitted that the dependence of the duration of life upon the external conditions of existence is alike common to plants and animals. In both kingdoms the high multicellular forms with well-differentiated organs contain the germs of death, while the low unicellular organisms are potentially immortal. Furthermore, an undying succession of reproductive cells is possessed by all the higher forms, although this may be but poor consolation to the conscious individual which perishes. Johannes Müller is therefore right, when in the sentence quoted at the beginning of my lecture, he speaks of an ‘appearance of immortality’ which passes from each individual into that which succeeds it. That which remains over, that which persists, is not the individual itself,—not the complex aggregate of cells which is conscious of itself,—but an individuality which is outside its consciousness, and of a low order,—an individuality which is made up of a single cell, which arises from the conscious individual. I might here conclude, but I wish first, in a few words, to protect myself against a possible misunderstanding.
I have repeatedly spoken of immortality, first of the unicellular organism, and secondly of the reproductive cell. By this word I have merely intended to imply a duration of time which appears to be endless to our human faculties. I have no wish to enter into the question of the cosmic or telluric origin of life on the earth. An answer to this question will at once decide whether the power of reproduction possessed by these cells is in reality eternal or only immensely prolonged, for that which is without beginning is, and must be, without end.
The supposition of a cosmic origin of life can only assist us if by its means we can altogether dispense with any theory of spontaneous generation. The mere shifting of the origin of life to some other far-off world cannot in any way help us. A truly cosmic origin in its widest significance will rigidly limit us to the statement—omne vivum e vivo—to the idea that life can only arise from life, and has always so arisen,—to the conclusion that organic beings are eternal like matter itself.
Experience cannot help us to decide this question; we do not know whether spontaneous generation was the commencement of life on the earth, nor have we any direct evidence for the idea that the process of development of the living world carries the end within itself, or for the converse idea that the end can only be brought about by means of some external force.
I admit that spontaneous generation, in spite of all vain efforts to demonstrate it, remains for me a logical necessity. We cannot regard organic and inorganic matter as independent of each other and both eternal, for organic matter is continually passing, without residuum, into the inorganic. If the eternal and indestructible are alone without beginning, then the non-eternal and destructible must have had a beginning. But the organic world is certainly not eternal and indestructible in that absolute sense in which we apply these terms to matter itself. We can, indeed, kill all organic beings and thus render them inorganic at will. But these changes are not the same as those which we induce in a piece of chalk by pouring sulphuric acid upon it; in this ease we only change the form, and the inorganic matter remains. But when we pour sulphuric acid upon a worm, or when we burn an oak tree, these organisms are not changed into some other animal and tree, but they disappear entirely as organized beings and are resolved into inorganic elements. But that which can be completely resolved into inorganic matter must have also arisen from it, and must owe its ultimate foundation to it. The organic might be considered eternal if we could only destroy its form, but not its nature.
It therefore follows that the organic world must once have arisen, and further that it will at some time come to an end. Hence we must speak of the eternal duration of unicellular organisms and of reproductive cells in the Metazoa and Metaphyta in that particular sense which signifies, when measured by our standards, an immensely long time.
Yet who can maintain that he has discovered the right answer to this important question? And even though the discovery were made, can any one believe that by its means the problem of life would be solved? If it were established that spontaneous generation did actually occur, a new question at once arises as to the conditions under which the occurrence became possible. How can we conceive that dead inorganic matter could have come together in such a manner as to form living protoplasm, that wonderful and complex substance which absorbs foreign material and changes it into its own substance, in other words grows and multiplies?
And so, in discussing this question of life and death, we come at last—as in all provinces of human research—upon problems which appear to us to be, at least for the present, insoluble. In fact it is the quest after perfected truth, not its possession, that falls to our lot, that gladdens us, fills up the measure of our life, nay! hallows it.
APPENDIX
Note 1. The Duration of Life among Birds
There is less exact knowledge upon this subject than we might expect, considering the existing number of ornithologists and ornithological societies with their numerous publications. It has neither been possible nor necessary for my purpose to look up all the widely-scattered references which are to be found upon the subject. Many of these are doubtless unknown to me; for we are still in want of a compilation of accurately determined observations in this department of zoology. I print the few facts which I have been able to collect, as a slight contribution towards such a compilation.
Small singing birds live from eight to eighteen years: the nightingale, in captivity, eight years, but longer according to some writers: the blackbird, in captivity, twelve years, but both these birds live longer in the natural state. A ‘half-bred nightingale built its nest for nine consecutive years in the same garden’ (Naumann, ‘Vögel Deutschlands,’ p. 76).