Оценить:
 Рейтинг: 4.6

Для юных математиков. Веселые задачи

Год написания книги
1916
<< 1 2 3 4 5 6 7 8 ... 11 >>
На страницу:
4 из 11
Настройки чтения
Размер шрифта
Высота строк
Поля

Площадь параллелограмма равна его основанию, умноженному на его высоту. В основании нашего параллелограмма лежат 4 спички, высота же равна 1 

/

спичкам; следовательно, площадь равна 4 x 1

/

, т. е. 6таким квадратикам, каких в меньшем четырехугольнике 2. Итак, нижний четырехугольник имеет площадь втрое большую, нежели верхний.

Глава II

Десять легких задач

ЗАДАЧА № 11

Бочки

В магазин доставили 6бочек керосину. На этом рисунке обозначено, сколько ведер было в каждой бочке. В первый же день нашлось два покупателя; один купил целиком две бочки, другой – три, причем первый купил вдвое менее керосина, чем второй. Не пришлось даже раскупоривать бочек.

Рис. 17.

И тогда на складе из 6 бочек осталась всего одна. Какая?

ЗАДАЧА № 12

До половины

В бочке налита вода, по-видимому, до половины. Но вы хотите узнать точно, половина ли в ней налита, или больше половины, или же меньше половины. У вас нет ни палки, ни вообще инструмента для обмера бочки. Втулки бочка не имеет. Каким образом могли бы вы убедиться, налита ли вода ровно до половины?

ЗАДАЧА № 13

Невозможное равенство

Кстати, о полупустой бочке. Полупустая бочка – это ведь то же, что и полуполная. Но если половины равны, то должны быть равны и целые. Полупустая бочка равна полуполной, – значит, пустая бочка должна равняться полной. Выходит, что пустой равен полному!

Почему получился такой несообразный вывод?

ЗАДАЧА № 14

Число волос

Как вы думаете: существует ли на свете два человека с одинаковым числом волос?

Вы ответите, пожалуй, что два совершенно лысых человека имеют волос поровну, потому что и у того и у другого ноль волос.

Это, если хотите, правильно.

Но я спрашиваю не о безволосых людях, а о таких, у которых имеются на голове густые волосы. Найдется ли в мире два человека, у которых число волос на голове было бы в точности одинаково?

А может быть, двое таких людей отыщутся в Ленинграде или Москве?

ЗАДАЧА № 15

Цена переплета

Книга в переплете стоит 2 руб. 50 коп. Книга на 2 рубля дороже переплета. Сколько стоит переплет?

ЗАДАЧА № 16

Цена книги

Иванов приобретает все нужные ему книги у знакомого ему книгопродавца со скидкою в 20 процентом. С 1-го января цены всех книг повышены на 20 процентов. Иванов решил, что он будет теперь платить за книги столько, сколько остальные покупатели платили до 1-го января. Прав ли он?

ЗАДАЧА № 17

Головы и ноги

На лугу паслись лошади под надзором кучеров. Если бы вы пожелали сосчитать, сколько всех ног на лугу, то насчитали бы 82 ноги. А если бы пересчитали головы, то оказалось бы, что всех голов – лошадиных и человеческих – 26.

Сколько было лошадей и сколько кучеров?

Надо заметить, что ни безногих лошадей, ни калек-кучеров на лугу не было.

ЗАДАЧА № 18

На счётах

Вы, без сомнения, умеете считать на конторских счётах и понимаете, что отложить на них 25 рублей – задача очень легкая.

Но задача станет замысловатее, если вам поставят условие: сделать это так, чтобы отодвинуть не 7 косточек, как обыкновенно, а 25 косточек.

Попробуйте, в самом деле, показать на конторских счётах сумму в 25 рублей, отложив ровно 25 косточек.

Конечно, на практике так никогда не делается, но задача все же разрешима, и ответ довольно любопытен.

ЗАДАЧА № 19

Редкая монета

Собирателю редкостей сообщили, что в Риме при раскопках найдена монета с надписью по-латыни:

55-й год до Р. X.

– Монета, конечно, поддельная, – ответил собиратель.

Как мог он знать это, не видя ни самой монеты, ни даже ее изображения?

ЗАДАЧА № 20
<< 1 2 3 4 5 6 7 8 ... 11 >>
На страницу:
4 из 11