откуда
Значит, вы можете таким рычагом поднять не больше 45 кг.
Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?
Обозначив длину короткого плеча буквою х, составляем пропорцию:
10: 150 = х: 105,
откуда
Короткое плечо равно 7 см.
Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.
Предположим, нужно поднять большой брус (рис. 14). Если он слишком тяжел для ваших сил, то вы засовываете под брус прочную палку, упираете ее конец в пол и тянете за другой конец вверх. В данном случае палка является рычагом; точка его опоры на самом конце; ваша сила действует на второй конец; но груз напирает на рычаг не по другую сторону от точки опоры, а по ту же сторону, где приложена ваша сила. Иными словами, плечи рычага в данном случае: длинное – полная длина рычага и короткое – часть его, засунутая под брус. Точка же опоры лежит не между силами, а вне их. В этом отличие рычага 2-го рода от рычага 1-го рода, у которого груз и сила расположены по разные стороны от точки опоры.
Рис. 14. Рычаги 1-го и 2-го рода: груз и сила расположены по разные стороны от точки опоры
Несмотря на это отличие, соотношение сил и плеч на рычаге 2-го рода такое же, как на рычаге 1-го рода: сила и груз обратно пропорциональны длинам плеч[4 - Здесь необходимо обратить внимание на следующее: в этом случае длиною плеча будет расстояние от точки опоры А до точки приложения силы С, т. е. полная длина рычага АС.]. В нашем случае, если для непосредственного поднятия двери нужно, например, 27 кг, а длина плеч 18 см и 162 см, то сила х, с которой вы должны действовать на конец рычага, определяется из пропорции
х: 27= 18: 162,
откуда
Ваше усилие должно быть не меньше 3 кг (не меньше потому, что сила в 3 кг только уравновешивает сопротивление двери).
Билетный автомат
Для продажи билетов, дающих право выйти на платформу, поставлены на некоторых вокзалах билетные автоматы; вы бросаете в щель автомата 10-копеечную монету – и из другой щели тотчас же выскакивает билет. Многие думают, что внутри автомата сложный механизм. Между тем приспособление здесь довольно простое: не что иное, как видоизменение известного уже вам рычага.
Взгляните на рис. 15, и секрет билетного автомата станет для вас ясен. Монета скатывается на конец рычажка и своим весом (и ударом) заставляет его опускаться. От этого противоположный, более короткий конец рычажка приподнимается, увлекая за собой пластинку, за которой на косом основании лежит стопка билетов. Пластинка поднимается ровно настолько, чтобы через образовавшуюся щелочку как раз мог проскользнуть один билетик. Вот и все нехитрое устройство автомата. Конечно, нужно подобрать длину плеч рычага так, чтобы вес и удар 10-копеечной монеты были достаточны для надлежащего поднятия пластинки. Монета меньшего веса не произведет этого действия. А кружок того же веса, но из другого материала будет иметь ведь другие размеры и, значит, не пройдет через монетную щелочку автомата.
Рис. 15. Устройство билетного автомата
Ворот и шпиль
Кому не случалось видеть, как из глубоких колодцев поднимают полные ведра с помощью «ворота», при этом вращается вал, на который наматывается веревка: она-то и вытягивает ведро с водою.
Почему же таким способом легче вытаскивать тяжелое ведро, чем просто руками? Рассмотрим ворот внимательнее (рис. 16). Когда поворачивают колесо А в направлении стрелки, то в том же направлении поворачивается и вал.
Рис. 16. Как работает ворот
Проведем прямую NM через ось вала. Эту прямую мы можем рассматривать как рычаг, который вращается вокруг точки О. Сила приложена в точке М, а поднимаемый груз – в N (силы по разные стороны от точки опоры: это рычаг 1-го рода). Следовательно, сила, приложенная в точке М (т. е. к колесу), во столько раз меньше силы, приложенной в N (т. е. к валу), во сколько раз ON (радиус вала) меньше ОМ (радиуса колеса). Но радиус вала всегда в несколько раз меньше радиуса колеса; следовательно, на колесо приходится действовать с силою в несколько раз меньшею, чем вес полного ведра. Отсюда ясна выгода ворота. Если, например, радиус колеса 60 см, а радиус вала 1
/
см, то ведро с водой весом 12 кг можно уравновесить силою х, которая определяется из пропорции:
х: 12 = 7
/
: 60,
откуда
Существуют вороты, приспособленные не для поднятия грузов, а для волочения; такой ворот называется шпилем, или кабестаном. Здесь вал – стоячий, а не лежачий, а вместо колеса имеются длинные шесты – «водила», которыми вращают вал. Нетрудно сообразить, что сила, с какой приходится напирать на конец водила, во столько раз меньше сопротивления груза (его трения об опору), во сколько раз радиус вала меньше длины водила.
Пусть, например, нужно передвигать груз, требующий без шпиля усилия в 500 кг; имеется шпиль с валом радиуса 21 см и с водилами длиною 3
/
м. Тогда усилие х, которое нужно приложить к концу водил, чтобы тащить груз, найдем из пропорции:
х: 500 = 21: 350,
откуда
Золотое правило механики
На вороте или на шпиле можно, значит, небольшою силою привести в движение значительный груз. Но скорость этого движения в таких случаях бывает невелика, – меньше, чем скорость, с какою движется приложенная к вороту сила.
Рассмотрим последний пример со шпилем: при одном полном обороте конец шеста, где приложена сила, описывает путь длиною
2 ? 3,14 ? 350 = 2200 см.
Тем временем вал сделает также один оборот, намотав на себя кусок веревки, длиною
2 ? 3,14 ? 21 = 130 см.
Следовательно, груз подтянется всего на 130 см. Сила прошла 2 200 см, а груз за то же время – только 130 см, т. е. почти в 17 раз меньше. Если сравните величину груза (500 кг) с величиною усилия, прилагаемого к шпилю (30 кг), то убедитесь, что между ними существует такое же отношение:
500: 30 = около 17.
Вы видите, что путь груза во столько же раз меньше пути силы, во сколько раз эта сила меньше груза. Другими словами: во сколько раз выигрывается в силе, во столько же раз теряется в скорости.
Рис. 17. Объяснение золотого правила механики
Это правило применимо не только к вороту или шпилю, но и к рычагу, и ко всякой вообще машине (его издавна называют «золотым правилом механики»).
Рассмотрим, например, рычаг, о котором говорилось на с. 51. Здесь выигрывается в силе в 3 раза, но зато, пока длинное плечо рычага (см. рис. 17) описывает своим концом большую дугу MN, конец короткого плеча описывает втрое меньшую дугу ОР. Следовательно, и в этом случае путь, проходимый грузом, меньше пути, проходимого в то же время силою, в 3 раза – во столько же раз, во сколько эта сила меньше груза.
Теперь вам станет понятно, почему в некоторых случаях выгодно пользоваться рычагами наоборот: действуя большою силой на короткое плечо, чтобы двигать маленький груз на конце длинного плеча. Какая выгода так поступать? Ведь мы теряем здесь в силе! Конечно, зато во столько же раз выигрываем в скорости. И когда нам необходима большая скорость, мы приобретаем ее этой ценой. Такие рычаги представляют кости наших рук (рис. 18): в них мускул прикреплен к короткому плечу рычага 2-го рода и приводит в быстрое движение кисть руки.
Рис. 18. Наша рука – рычаг. Какого рода?
В данном случае потеря силы вознаграждается выигрышем скорости. Мы были бы крайне медлительными существами, если бы кости нашего скелета были устроены как рычаги, выигрывающие в силе и, значит, теряющие в скорости.