Оценить:
 Рейтинг: 0

Физика в быту

Год написания книги
2022
Теги
1 2 3 >>
На страницу:
1 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Физика в быту
Алла Борисовна Казанцева

Наука на пальцах
У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

В формате a4.pdf сохранен издательский макет.

Алла Борисовна Казанцева

Физика в быту

* * *

© А.Б. Казанцева, 2022

© ООО «Издательство АСТ», 2022

Предисловие автора

Эта книга и о физике, и о нашей жизни в современном мире.

Для большинства людей физика ассоциируется со школой: это трудный и малопонятный предмет, имеющий небольшое отношение к повседневной жизни. Понятно, что все современные технологии так или иначе базируются на физических законах, но надо ли каждому пользователю знать и понимать эти законы? И всё же физика имеет гораздо большее отношение к повседневной жизни, чем это кажется на первый взгляд. В этой книге мы хотим рассказать о некоторых физических явлениях и законах, которые позволят вам лучше понимать и оценивать риски обитания в современном мире, особенно в больших городах. Как вы полагаете, к примеру: что причиняет больший вред нашему здоровью – курение, городские шумы или электромагнитное загрязнение? А что опаснее – жить возле атомной электростанции или возле тепловой? Эти и многие другие животрепещущие вопросы будут затронуты в книге.

Она состоит из четырёх частей. В первой части обсуждается звуковая составляющая нашей жизни. Мы расскажем, что такое звук и в чём отличие музыки от шума, поговорим о звуках полезных и вредных, об опасности «неслышных» звуков; выясним, можно ли сделать голос красивее и в чём тайна целительного воздействия музыки на человека. Вы узнаете также об особенностях слухового восприятия и о причинах преждевременного его повреждения.

Во второй части речь пойдёт об источниках света. Какие опасности для здоровья таят в себе такие, казалось бы, безобидные устройства, как осветительные приборы? Как их грамотно выбирать? Чтобы разобраться в этом, мы предварительно вооружимся всеми необходимыми сведениями о свете и о нашей зрительной системе.

Третья часть книги посвящена электромагнитной обстановке больших городов. Вы узнаете о нашей удивительной связи с естественными электромагнитными полями Земли, которые в современном мире почти полностью заглушены гораздо более сильными техногенными полями. Как это может отразиться на нашем здоровье, и как минимизировать риски?

Наконец в четвёртой части мы поговорим о том, что такое радиация, где мы можем «схватить дозу», чего надо бояться, а чего нет. Мы постараемся разобраться с физическими основами всех этих явлений, чтобы вы могли осознанно выстраивать свой быт в современных условиях.

Автор книги более тридцати лет преподаёт физику самым разным слушателям – как физикам, так и не физикам, а также читает научно-популярные лекции. Автор надеется, что изложенный материал будет понятен и интересен любознательному читателю, который хоть «краешком уха» прослушал курс физики в школе или только знакомится с этой замечательной наукой. Студенты-физики и учителя также найдут в книге что-то полезное для себя.

Часть 1

Мир звуков

Мы погружены в звуковую атмосферу: голоса природы, городские шумы, речь, музыка. Что такое звуки, как они рождаются и почему такие разные: высокие и низкие, приятные и неприятные, иногда шумы, а иногда музыка? Какая может быть польза от звуков для нашего здоровья и самочувствия и могут ли они приносить вред? Постепенно мы ответим на все эти вопросы. Природу звука и проблемы, связанные с его возникновением, распространением и восприятием человеком, изучает раздел физики – акустика. Сначала мы немного поговорим о физике: как звуковые волны возникают, распространяются и воспринимаются человеком, а затем обсудим их влияние на самочувствие и здоровье.

Глава 1

Физика звуков

Что такое звук?

Мы слышим звук, когда что-то заставляет вибрировать, то есть колебаться, барабанные перепонки в наших ушах. Причём частота вибрации должна лежать в определённых пределах: не менее 16 колебаний в секунду (то есть 16 герц) и не более 20 тысяч колебаний в секунду (20 тысяч герц). Эту область частот называют звуковым диапазоном. Колебания барабанной перепонки с частотой менее 16 герц и более 20 тысяч герц мы не воспринимаем как звук, то есть не слышим. Сразу оговоримся: таков звуковой диапазон для молодых людей. Но уже с 15–20 лет этот диапазон начинает заметно сужаться, особенно со стороны высоких частот. Так что к 35 годам люди перестают слышать звуки с частотой более 15 тысяч герц, а к 50 годам верхний предел снижается, как правило, до 12 тысяч герц (у многих мужчин даже до 6–7 тысяч герц). Причём для того, чтобы предельно низкие и предельно высокие звуки были услышаны, они должны быть очень сильными, то есть вызывающими гораздо более интенсивные колебания барабанных перепонок, чем звуки середины звукового диапазона.

Колебания – это периодически повторяющиеся движения, они характеризуются частотой – числом колебаний в секунду. Частота измеряется в герцах (сокращённо Гц): 1 Гц – это одно колебание в секунду.

Одни звуки мы воспринимаем как низкие (басовые), другие – как высокие, тонкие. Музыканты называют это высотой тона. Именно частота колебаний определяет высоту тона: большая частота создаёт ощущение высокого звука, малая частота – низкого.

Итак, ощущение звука связано с вибрацией барабанных перепонок. Но что её вызывает? Обычно нас окружает воздух. Вибрации воздуха, его периодические сгущения и разрежения – вот что заставляет так же периодически двигаться наши барабанные перепонки. А что порождает вибрации воздуха? Периодические или непериодические изменения плотности окружающей среды создаёт источник звука.

Этим источником может быть любое тело: можно ущипнуть струну или провести по ней смычком, постучать по чему-нибудь, поскрести, потрясти… Нужно, чтобы поверхность тела-источника начала колебаться, колыхаться, дрожать. Положите ладонь на горло во время пения или потрогайте крышку звучащего рояля, и вы почувствуете вибрацию.

Вибрирующая поверхность источника изменяет плотность прилегающего слоя окружающей среды: воздуха или воды, а иногда и твёрдого тела (копыта коня стучат по земле). Все эти среды – газообразная, жидкая, твёрдая – являются упругими, то есть изменения плотности и давления, возникшие в одном месте, передаются от слоя к слою, распространяясь всё дальше от источника, подобно кругам на воде от брошенного камня. Такая передача объясняется взаимодействием молекул среды друг с другом. В газе это взаимодействие сводится к столкновениям молекул: молекулы из места уплотнения расталкивают молекулы в прилегающих слоях, заставляя их так же толкать своих соседей. В итоге колебания плотности и давления передаются от слоя к слою с определённой скоростью – скоростью звука. В газах эта скорость составляет сотни метров в секунду (в воздухе при комнатной температуре она равна 340 м/с). Обратите внимание: при распространении звуковой волны сами массы воздуха не перемещаются, каждая частичка среды лишь колеблется туда-сюда и заставляет это делать соседние частицы.

В жидких и твёрдых средах молекулы «чувствуют» друг друга на расстоянии электрическими полями: стоит одному слою молекул чуть сместиться от своего положения равновесия, как соседние молекулы почувствуют это и тоже придут в движение – начнут колебаться около своих равновесных положений, воздействуя в свою очередь на следующие слои. Поэтому звуковые волны в плотных средах распространяются быстрее, чем в газах. Так, в воде скорость звука около 1,5 км/с, а в твёрдых телах и того больше.

Звуковая волна – это процесс распространения колебаний плотности и давления в упругой среде (воздухе, воде и любом твёрдом веществе).

И вот звуковая волна доходит до барабанной перепонки уха, вызывая её движения. От перепонки колебания через систему слуховых косточек передаются улитке внутреннего уха (мы ещё поговорим о ней в своё время), а от неё уже в виде электрических импульсов по слуховому нерву поступают в нужную зону мозга, который обрабатывает полученный сигнал. И мы слышим звук. Так что звук – явление не только физическое, но и физиологическое.

Ощущение звука возникает в результате воздействия колебаний давления воздуха (или воды, если человек находится в воде) на барабанную перепонку уха.

Итак, чтобы мы услышали звук, необходимы три составляющие:

1. Источник звука, создающий периодические или непериодические изменения плотности частиц окружающей среды.

2. Упругая среда, которая передаёт возникшие в ней уплотнения во все стороны.

3. Приёмник звука (барабанные перепонки и весь наш слуховой аппарат). Добавим сюда и мозг, обрабатывающий сигналы от звуковых нервов.

Неслышные звуки

Звуковые волны с частотой менее 16 Гц называют инфразвуком, а с частотой более 20 000 Гц – ультразвуком. Мы не воспринимаем такие колебания барабанной перепонки как звук, но значит ли это, что мы совсем их не чувствуем?

Исследования инфразвука начались в середине прошлого века. Инфразвук появляется при землетрясениях, цунами, ударах грома, вибрациях тяжелых станков, рёве реактивных двигателей.

Он присутствует и в рок-музыке, особенно в тяжёлом роке и на «живых» концертах.

Инфразвуковые волны проходят сквозь любые преграды и распространяются на огромные расстояния.

У многих морских животных развита чувствительность к инфразвуку, благодаря которой они узнают о приближении шторма. Некоторые виды наземных животных (в том числе кошки) изменяют своё поведение перед землетрясением.

Что позволяет им чувствовать его приближение? Малые колебания грунта, увеличение статического электричества, воздействие инфразвуковых волн? Точно неизвестно. Возможно, все факторы вместе. А тигры, слоны, аллигаторы просто слышат инфразвук и даже могут общаться с его помощью!

Хотя человеку и большинству животных инфразвук и не слышен, он всё же действует на внутренние органы и системы организма и вызывает чувство тревоги. Этот эффект пытались использовать в фильмах ужасов, но потом запретили, так как инфразвук может привести к неконтролируемой панике среди зрителей. При большой интенсивности инфразвук ощущается как вибрация в теле, вызывая недомогания (тошноту, головокружение, вялость) и даже чувство острой боли. Наиболее негативное влияние инфразвук оказывает на нервную систему и работу сердца. Есть предположение, что инфразвук, возникающий от шторма в океане, увеличивает число автокатастроф и сердечных заболеваний на расстояниях в тысячи километров!

Инфразвук при длительном воздействии вызывает состояние усталости. Присутствием инфразвука в шумах автострад и рёве взлетающих самолётов может объясняться синдром усталости у живущих поблизости людей.

Ультразвук имеет частоты, превышающие верхний порог звукового диапазона, то есть выше 20 тысяч (а для пожилых людей – выше 12 тысяч) герц.

Многие животные могут воспринимать ультразвук, например кошки, собаки, кузнечики, летучие мыши, бабочки. Дельфины и другие морские животные для поисков косяков рыб, для ориентировки в мутной воде используют ультразвуковую локацию, то есть посылают ультразвуковой сигнал, а затем ловят сигнал, отражённый от препятствия. По времени запаздывания отраженного сигнала они судят о расстоянии до препятствия, а по изменению частоты сигнала – о скорости движения этого препятствия (этот же принцип применяют «гаишники» для определения скорости вашего автомобиля). Почему дельфины предпочитают зрению ультразвуковую локацию? Потому что свет в воде довольно сильно поглощается (радиус видимости составляет несколько метров), а ультразвук с частотой 50 тысяч герц распространяется на несколько километров! Летучие мыши и другие ночные животные благодаря ультразвуковой локации ориентируются при ночном полёте. В медицине тоже широко применяется ультразвуковая локация – это знакомая вам процедура УЗИ.

Как измеряют волны

Поговорим немного подробнее о волнах. Это пригодится нам не только в связи со звуком, но и при разговоре об электромагнитном излучении и свете.

1 2 3 >>
На страницу:
1 из 3