Все эти рецепторы представляют собой механорецепторы, специфическим раздражителем которых является их растяжение.
Мышечные веретена прикрепляются к мышечным волокнам параллельно – один конец к сухожилию, а другой – к волокну. Каждое веретено покрыто капсулой, образованной несколькими слоями клеток, которая в центральной части расширяется и образует ядерную сумку. Внутри веретена содержится несколько (от 2 до 14) тонких внутриверетенных, или так называемых интрафузальных, мышечных волокон. Эти волокна в 2–3 раза тоньше обычных волокон скелетных мышц (экстрафузальных).
Интрафузальные волокна подразделяются на два типа:
1) длинные, толстые, с ядрами в ядерной сумке, которые связаны с наиболее толстыми и быстропроводящими афферентными нервными волокнами, – они информируют о динамическом компоненте движения (скорости изменения длины мышцы) и
2) короткие, тонкие, с ядрами, вытянутыми в цепочку, информирующие о статическом компоненте (удерживаемой в данный момент длине мышцы). Окончания афферентных нервных волокон намотаны на интрафузальные волокна рецептора. При растяжении скелетной мышцы происходит растяжение и мышечных рецепторов, которое деформирует окончания нервных волокон и вызывает появление в них нервных импульсов. Частота проприоцептивной импульсации возрастает с увеличением растяжения мышцы, а также при увеличении скорости ее растяжения. Тем самым нервные центры информируются о скорости растяжения мышцы и ее длине. Вследствие малой адаптации импульсация от мышечных веретен продолжается в течение всего периода поддержания растянутого состояния, что обеспечивает постоянную осведомленность центров о длине мышцы. Чем более тонкие и координированные движения осуществляют мышцы, тем больше в них мышечных веретен: у человека в глубоких мышцах шеи, связывающих позвоночник с головой, среднее их число составляет 63, а в мышцах бедра и таза – менее 5 веретен на 1 г массы мышцы (рис. 16, Д).
ЦНС может тонко регулировать чувствительность проприорецепторов. Разряды мелких гамма-мотонейронов спинного мозга вызывают сокращение интрафузальных мышечных волокон по обе стороны от ядерной сумки веретена. В результате средняя несократимая часть мышечного веретена растягивается, и деформация отходящего отсюда нервного волокна вызывает повышение его возбудимости. При той же длине скелетной мышцы в нервные центры будет поступать большее число афферентных импульсов. Это позволяет, во-первых, выделять проприоцептивную импульсацию на фоне другой афферентной информации и, во-вторых, увеличивать точность анализа состояния мышц. Повышение чувствительности веретен происходит во время движения и даже в предстартовом состоянии. Это объясняется тем, что в силу низкой возбудимости гамма-мотонейронов их активность в состоянии покоя выражена слабо, а при произвольных движениях и вестибулярных реакциях она активируется. Чувствительность проприорецепторов повышается также при умеренных раздражениях симпатических волокон и выделении небольших доз адреналина.
Сухожильные органы расположены в месте перехода мышечных волокон в сухожилия. Сухожильные рецепторы (окончания нервных волокон) оплетают тонкие сухожильные волокна, окруженные капсулой. В результате последовательного крепления сухожильных органов к мышечным волокнам (а в ряде случаев – к мышечным веретенам) растяжение сухожильных механорецепторов происходит при напряжении мышц. Таким образом, в отличие от мышечных веретен, сухожильные рецепторы информируют нервные центры о степени напряжения мышц и скорости его развития.
Суставные рецепторы и нформируют о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецепторы представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни суставные рецепторы посылают информацию о величине суставного угла, т. е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецепторы возбуждаются только в момент движения в суставе, т. е. посылают информацию о скорости движения. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.
Сигналы, идущие от рецепторов мышечных веретен, сухожильных органов, суставных сумок и тактильных рецепторов кожи, называют кинестетическими, т. е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положениях или поддержании веса. Сигналы же от других проприорецепторов, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движений и поз.
7.9. Сенсорные системы кожи, внутренних органов, вкуса и обоняния
В коже и внутренних органах имеются разнообразные рецепторы, реагирующие на физические и химические раздражители.
7.9.1. Кожная рецепция
В коже представлена тактильная, температурная и болевая рецепция. На 1 см
кожи в среднем приходится 12–13 холодовых точек, 1–2 тепловых, 25 тактильных и около 100 болевых.
Тактильная сенсорная система предназначена для анализа давления и прикосновения. Ее рецепторы представляют собой свободные нервные окончания и сложные образования (тельца Мейснера, тельца Паччини), в которых нервные окончания заключены в специальную капсулу. Они находятся в верхних и нижних слоях кожи, в кожных сосудах, в основаниях волос. Особенно их много на пальцах рук и ног, ладонях, подошвах, губах. Это механорецепторы, реагирующие на растяжение, давление и вибрацию. Наиболее чувствительным рецептором является тельце Паччини, которое вызывает ощущение прикосновения при смещении капсулы лишь на 0,0001 мм. Чем больше размеры тельца Паччини, тем более толстые и быстропроводящие афферентные нервы отходят от него. Они проводят кратковременные залпы (длительностью 0,005 с), информирующие о начале и окончании действия механического раздражителя. Путь тактильной информации следующий: рецептор – 1-й нейрон в спинномозговых узлах – 2-й нейрон в спинном или продолговатом мозге – 3-й нейрон в промежуточном мозге (таламус) -4-й нейрон в задней центральной извилине коры больших полушарий (первичная соматосенсорная зона).
Температурная рецепция осуществляется холодовыми рецепторами (колбы Краузе) и тепловыми (тельца Руффини, Гольджи-Маццони). При температуре кожи +31…37 °C эти рецепторы почти неактивны. Ниже этой границы холодовые рецепторы активизируются пропорционально падению температуры, затем их активность падает и совсем прекращается при + 12 °C. При температуре выше +37 °C активизируются тепловые рецепторы, достигая максимальной активности при +43 °C, затем резко прекращают ответы.
Болевая рецепция, как считает большинство специалистов, не имеет специальных воспринимающих образований. Болевые раздражения воспринимаются свободными нервными окончаниями, а также возникают при сильных температурных и механических раздражениях в соответствующих термо- и механорецепторах.
Температурные и болевые раздражения передаются в спинной мозг, оттуда в промежуточный мозг и в соматосенсорную область коры.
7.9.2. Виоцероцептивная (интерорецептивная) сенсорная система
Во внутренних органах имеется множество рецепторов, воспринимающих давление – барорецепторы сосудов, кишечного тракта и др., изменения химизма внутренней среды – хеморецепторы, ее температуры – терморецепторы, осмотического давления, болевые раздражения. С их помощью безусловно-рефлекторным путем регулируется постоянство различных констант внутренней среды (поддержание гомеостаза), ЦНС информируется об изменениях во внутренних органах. Информация от интерорецепторов через блуждающий, чревный и тазовый нервы поступает в промежуточный мозг и далее в лобные и другие области коры головного мозга. Деятельность этой системы практически не осознается, она мало локализована, однако при сильных раздражениях она хорошо ощущается. Она участвует в формировании сложных ощущений – жажды, голода и др.
7.9.3. Обонятельная и вкусовая сенсорные системы
Обонятельная и вкусовая сенсорные системы относятся к древнейшим системам. Они предназначены для восприятия и анализа химических раздражений, поступающих из внешней среды.
Хеморецепторы обоняния находятся в обонятельном эпителии верхних носовых ходов. Это – волосковые биполярные клетки, передающие информацию через решетчатую кость черепа к клеткам обонятельной луковицы мозга и далее через обонятельный тракт к обонятельным зонам коры (крючек морского коня, извилина гиппокампа и др.). Различные рецепторы избирательно реагируют на разные молекулы пахучих веществ, возбуждаясь лишь теми молекулами, которые являются зеркальной копией поверхности рецептора. Они воспринимают эфирный, камфарный, мятный, мускусный и другие запахи, причем к некоторым веществам чувствительность необычайно высока.
Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом – убывает. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступают через волокна лицевого и языко-глоточного нервов (продолговатый мозг) в таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горького (задняя часть языка), кислого (края языка), сладкого (передняя часть языка) и соленого (передняя часть и края языка). Между вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, так как вкусовые ощущения могут изменяться при заболевании, беременности, условно-рефлекторных воздействиях, изменениях аппетита. В формировании вкусовых ощущений участвуют обоняние, тактильная, болевая и температурная чувствительность. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пищи, формированием чувства голода, сытости.
7.10. Переработка, взаимодействие и значение сенсорной информации
Сенсорная информация передается от рецепторов в высшие отделы мозга по двум основным путям нервной системы – специфическим и неспецифическим. Специфические проводящие пути составляют один из трех основных функциональных блоков мозга – блок приема, переработки и хранения информации. Это классические афферентные пути зрительной, слуховой, двигательной и других сенсорных систем. В обработке этой информации участвует и неспецифическая система мозга, не имеющая прямых связей с периферическими рецепторами, но получающая импульсы по коллатералям от всех восходящих специфических систем и обеспечивающая их широкое взаимодействие.
7.10.1. Обработка сенсорной информации в проводниковых отделах
Анализ получаемых раздражений происходит во всех отделах сенсорных систем. Наиболее простая форма анализа осуществляется в результате выделения специализированными рецепторами раздражителей различной модальности (свет, звук и пр.) из всех падающих на организм воздействий. При этом в одной сенсорной системе возможно уже более детальное выделение характеристик сигналов (цветоразличение фоторецепторами колбочек и др.).
Важной особенностью в работе проводникового отдела сенсорных систем является дальнейшая обработка афферентной информации, которая заключается, с одной стороны, в продолжающемся анализе свойств раздражителя, а с другой – в процессах их синтеза, в обобщении поступившей информации. По мере передачи афферентных импульсов на более высокие уровни сенсорных систем увеличивается число нервных клеток, которые реагируют на афферентные сигналы более сложно, чем простые проводники. Например, на уровне среднего мозга в подкорковых зрительных центрах имеются нейроны, которые реагируют на различную степень освещенности и обнаруживают движение, в подкорковых слуховых центрах – нейроны, извлекающие информацию о высоте тона и локализации звука, деятельность этих нейронов лежит в основе ориентировочного рефлекса на неожиданные раздражители.
Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие между различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходиться (конвергировать) импульсы различного происхождения (от 30 000 нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.
При поступлении в более высокие уровни нервной системы происходит расширение сферы сигнализации, приходящей от одного рецептора. Например, в зрительной системе сигналы одного рецептора связаны (через систему дополнительных нервных клеток сетчатки – горизонтальных и др.) с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры. С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.
Существенной особенностью деятельности проводникового отдела сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий. Большое количество параллельных каналов (в зрительном нерве 900 000 волокон, в слуховом – 30 000 волокон) помогает сохранить специфику передаваемого сообщения, а процессы бокового (латерального) торможения – изолировать эти сообщения от соседних клеток и путей.
Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе участвует также неспецифический отдел нервной системы (лимбическая система, ретикулярная формация). Активируя или затормаживая многие центральные нейроны, он способствует отбору наиболее значимой для организма информации. В отличие от обширных влияний среднемозговой части ретикулярной формации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.
7.10.2. Обработка информации на корковом уровне
В коре больших полушарий сложность обработки информации возрастает от первичных полей ко вторичным и третичным ее полям. Так, простые клетки первичных полей зрительной коры являются детекторами черно-белых границ прямых линий, воспринимаемых мелкими участками сетчатки, а сложные и сверхсложные нейроны вторичных зрительных полей выделяют длину линий, их углы наклона, различные контуры фигур, направление движения объектов, имеются клетки, опознающие знакомые лица людей и т. п.
Первичные поля коры осуществляют анализ раздражений определенной модальности, поступающих от связанных с ними специфических рецепторов. Это так называемые ядерные зоны анализаторов по И.П. Павлову: зрительные, слуховые и др. Их деятельность лежит в основе возникновения ощущений. Лежащие вокруг них вторичные поля (периферия анализаторов) получают от первичных полей результаты обработки информации и преобразуют их в более сложные формы. Во вторичных полях происходит осмысление полученной информации, ее узнавание, обеспечиваются процессы восприятия раздражений данной модальности. От вторичных полей отдельных сенсорных систем информация поступает в задние третичные поля – ассоциативные нижнетеменные зоны, где происходит интеграция сигналов различной модальности, позволяющая создать цельный образ внешнего мира со всеми его запахами, звуками, красками и т. п. Здесь на основе афферентных сообщений от разных частей правой и левой половины тела формируются сложные представления человека о схеме пространства и схеме тела, которые обеспечивают пространственную ориентацию движений и точную адресацию моторных команд к различным скелетным мышцам. Эти зоны также имеют особое значение в хранении полученной информации. На основе анализа и синтеза информации, обработанной в заднем третичном поле коры, в ее передних третичных полях (передней лобной области) формируются цели, задачи и программы поведения человека.
Важной особенностью корковой организации сенсорных систем является экранное, или соматотопическое (лат. соматикус – «телесный», топикус – «местный»), представительство функций. Чувствительные корковые центры первичных полей коры образуют как бы экран, отражающий расположение рецепторов на периферии, т. е. здесь имеются проекции «точка в точку». Так, в задней центральной извилине (общечувствительном поле) нейроны тактильной, температурной и кожной чувствительности представлены в том же порядке, что и рецепторы на поверхности тела, напоминая копию человечка (гомункулюса); в зрительной коре – как бы экран рецепторов сетчатки; в слуховой коре – в определенном порядке нейроны, реагирующие на определенную высоту звуков. Тот же принцип пространственного представительства информации наблюдается в переключательных ядрах промежуточного мозга, в коре мозжечка, что значительно облегчает взаимодействие различных отделов ЦНС.
Область коркового сенсорного представительства по своим размерам отражает функциональную значимость той или иной части афферентной информации. Так, в связи с особой значимостью анализа информации от кинестетических рецепторов пальцев руки и от речеобразующего аппарата у человека территория их коркового представительства значительно превосходит сенсорное представительство других участков тела. Аналогично этому на единицу площади центральной ямки в сетчатке глаза приходится почти в 500 раз большая зона зрительной коры, чем на такую же единицу площади периферии сетчатки.
Высшие отделы ЦНС обеспечивают активный поиск сенсорной информации. Это наглядно проявляется в деятельности зрительной сенсорной системы. Специальные исследования движений глаз показали, что взор фиксирует не все точки пространства, а лишь наиболее информативные признаки, особо важные для решения какой-либо задачи в данный момент. Поисковая функция глаз является частью активного поведения человека во внешней среде, его сознательной деятельностью. Она управляется высшими анализирующими и интегрирующими областями коры – лобными долями, под контролем которых происходит активное восприятие внешнего мира.
Кора больших полушарий обеспечивает наиболее широкое взаимодействие различных сенсорных систем и их участие в организации двигательных действий человека, в том числе в процессе его спортивной деятельности.
7.10.3. Значение деятельности сенсорных систем в спорте
Эффективность выполнения спортивных упражнений во многом зависит от процессов восприятия и переработки сенсорной информации. Эти процессы обусловливают как наиболее рациональную организацию двигательных актов, так и совершенство тактического мышления спортсмена. Четкое восприятие пространства и пространственная ориентация движений обеспечиваются функционированием зрительной, слуховой, вестибулярной, кинестетической рецепции. Оценка временных интервалов и управление временными параметрами движений базируются на проприоцептивных и слуховых ощущениях. Вестибулярные раздражения при поворотах, вращениях, наклонах и т. п. заметно влияют на координацию движений и проявление физических качеств, особенно при низкой устойчивости вестибулярного аппарата.
Экспериментальное выключение отдельных сенсорных афферентаций у спортсменов (выполнение движений в специальном ошейнике, исключающем активацию шейных проприорецепторов; при использовании очков, закрывающих центральное или периферическое поле зрения) приводило к резкому снижению оценок за упражнение или к полной невозможности его исполнения. В противоположность этому, сообщение спортсмену дополнительной информации (особенно срочной – в процессе движения) помогало быстрому совершенствованию технических действий. На основе взаимодействия сенсорных систем у спортсменов вырабатываются комплексные представления, сопровождающие его деятельность в избранном виде спорта – «чувство» льда, снега, воды и т. п. При этом в каждом виде спорта имеются наиболее важные – ведущие сенсорные системы, от активности которых в наибольшей мере зависит успешность выступлений спортсмена.
8. Кровь
Кровь представляет собой внутреннюю жидкую среду (ткань) организма, обеспечивающую определенное постоянство основных физиологических и биохимических параметров и осуществляющую гуморальную связь между органами. Существует два понятия: периферическая кровь, состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов, и система крови (Ланг Г.Ф., 1936), куда относят периферическую кровь, органы кроветворения и кроверазрушения (костный мозг, печень, селезенка и лимфатические узлы). Кровь является своеобразной формой ткани и характеризуется рядом особенностей: жидкая среда организма находится в постоянном движении, составные части крови имеют разное происхождение, образуются и разрушаются в основном вне ее.
8.1. Состав, объем и функции крови
Кровь состоит из форменных элементов (42–46 %) – эритроцитов (красных кровяных клеток), лейкоцитов (белых кровяных клеток) и тромбоцитов (кровяных пластинок) – и жидкой части – плазмы (54–58 %). Плазма крови, лишенная фибриногена, называется сывороткой. У взрослого человека общее количество крови составляет 5–8% массы тела, что соответствует 5–6 л. Объем крови принято обозначать по отношению к массе тела (мл/кг). В среднем он равен у мужчин 65 мл/кг, у женщин – 60 мл/кг, у детей – около 70 мл/кг.
Количество эритроцитов в крови примерно в тысячу раз больше, чем лейкоцитов, и в десятки раз выше, чем тромбоцитов. Последние по своим размерам в несколько раз меньше, чем эритроциты. Поэтому эритроциты составляют более 90 % всего объема, приходящегося на долю форменных элементов крови. Выраженное в процентах отношение объема форменных элементов к общему объему крови называется гематокритом. У мужчин гематокрит составляет в среднем 46 %, у женщин – 42 %. Это означает, что у мужчин форменные элементы занимают 46 %, плазма – 54 % объема крови, а у женщин – 42 и 58 % соответственно. Эта разница обусловлена тем, что у мужчин содержание эритроцитов в крови больше, чем у женщин. У детей гематокрит выше, чем у взрослых; в процессе старения гематокрит снижается. Увеличение гематокрита сопровождается возрастанием вязкости крови (внутренним ее трением), которая у здорового взрослого человека составляет 4–5 ед. Поскольку периферическое сопротивление кровотоку прямо пропорционально вязкости, любое существенное увеличение гематокрита приводит к повышению нагрузки на сердце, в результате чего кровообращение в некоторых органах может нарушаться.
Кровь выполняет в организме целый ряд физиологических функций.
• Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (питательных веществ, газов, гормонов, ферментов, метаболитов).