Ну, а фиктивные, т.е. бездействующие силы инерции обязаны своим существованием условно-академической классической модели неуравновешенного движения, в которой общее скалярное напряжение взаимодействия искусственно разделяется на два разнонаправленных вектора силы. И хотя каждый из них определяется вторым законом Ньютона, вектор, направленный против ускоряющегося тела приложен к ответному телу. Естественно, что для ускоряющегося тела этот вектор является фиктивной, т.е. бездействующей силой инерции, что в точности соответствует второму закону Ньютона, который в общем напряжении взаимодействия академически имитирует только свой вектор для каждой стороны взаимодействия.
Тем не менее, общее скалярное напряжение взаимодействия одновременно превращается в движение масс сразу всех сторон взаимодействия. Это реально ограничивает энергию преобразования напряжение-движение для каждой ускоряемой массы, что сказывается на ускорении, т.е. на интенсивности процесса преобразования напряжение-движение для каждой массы. Кроме того, как показано выше, ускорение процесса преобразования напряжение-движение определяется его отрицательной обратной связью. Всё это в совокупности и создаёт иллюзию реального вектора силы, направленного против ускоренного движения и вектора силы, поддерживающего останавливаемое движение, что и есть инерция.
В классической модели неуравновешенного движения ответное тело не рассматривается, а академический вектор силы синхронно движется вместе с ускоряемым телом с таким же ускорением. Это и создаёт иллюзию вектора движущейся силы и отсутствие противодействия его движению, т.е. фиктивность сил инерции. Однако в реальной действительности ускорение – это всего лишь коэффициент преобразования напряжение-движение, обусловленный отрицательной обратной связью этого процесса, который и определяет текущую мгновенную величину скалярного напряжения взаимодействия, но никак не вектора силы.
Причём эти академические нюансы классической модели неуравновешенного движения в учебниках физики не разъясняются, что приводит к двойственному пониманию сил инерции и самого понятия инерции в современной физике (см. гл. 1.1). Вот и спорят до сих пор даже маститые академики, которые, как и все мы учились по академическим моделям, о реальности или фиктивности сил инерции, потому что в современной физике делается упор на математическое модели явлений в ущерб физическому смыслу.
Таким образом, классических фиктивных сил инерции в природе действительно нет, но поскольку абсолютно все эффекты явления инерции обусловлены реальными законами взаимодействия, определяющимися третьим свойством материи преобразованием напряжение-движение или другими словами свойством инерции, то все силы Вселенной по своему физическому смыслу являются силами инерции.
Многие современные авторы всё больше склоняются к электромагнитной природе всех взаимодействий, в том числе и инерции, которая лежит в основе всех без исключения видов взаимодействий природы. Однако, как в старых, так и в новых теориях базовым понятием явления инерции остаётся связь между силой любой природы и преобразованием движения. Но это и есть не что иное, как врождённое свойство материи преобразование напряжение-движение.
Причём есть все основания полагать, что это базовое для явления инерции свойство материи имеет именно механическую природу, т.к., исходя из материалистических позиций, все поля любых из известных видов взаимодействий должны передавать свои воздействия посредством своих материальных носителей, т.е. механически. Поэтому врождённое механическое свойство материи инерция или преобразование напряжение-движение лежит в основе любых взаимодействий, в том числе и электрических.
Все законы Ньютона тесно взаимосвязаны между собой, главным из которых на наш взгляд является второй закон Ньютона, т.к. именно он определяет все действия в природе, в которых и рождаются все силы во Вселенной. Из него легко получить, в том числе и закон взаимодействия в виде его меры – энергии. Для этого достаточно умножить второй закон Ньютона на скорость и время, которым пропорциональна энергия:
F * V * t = m * a * V * t = E
При этом первый закон Ньютона не является самостоятельным законом. Это всего лишь следствие из второго закона Ньютона в отсутствие силы (F = 0). А раз нет силы, то нет и явления инерции. На нет, как говорится и суда нет. Третий же закон Ньютона свидетельствует лишь об одинаковом для взаимодействующих тел скалярном напряжении в зоне упругой деформации взаимодействия.
Конечно, напряжение в зоне деформации в процессе взаимодействия изменяется. Оно возрастает на первом этапе взаимодействия и разряжается на втором его этапе. Но в каждый момент времени общее напряжение остаётся одинаковым для каждого взаимодействующего тела, подобно скалярному напряжению внутри одного и того же сосуда, давление в котором успевает равномерно распределиться по всему его объёму, даже если его объём изменяется. Однако есть все основания полагать, что в динамике силы действия и противодействия всё-таки могут быть не равны.
В сторону меньшего тела, которое движется быстрее, напряжение взаимодействия разряжается быстрее, чем в сторону большего тела. Поэтому при выравнивании общего напряжения взаимодействия массовые элементы области деформации воздействуют на меньшее тело с большей скоростью, чем на бОльшее тело и чем предписывает усредняющий академический закон сохранения импульса и третий закон Ньютона. При этом, как будет показано ниже, в любом взаимодействии может возникать эффект «безопорного» движения всей системы в сторону меньшего тела.
Однако этот эффект экспериментально обнаружить очень сложно. Напряжение тут же превращается в движение тел. При этом оставшееся общее внутреннее напряжение взаимодействия тут же выравнивается по всему его объёму. Именно поэтому мы и вынуждены в расчёте взаимодействий использовать не напряжение на текущей границе каждого тела с зоной деформации, а общее усреднённое напряжение всей текущей зоны деформации, т.е. общую силу взаимодействия.
А теперь опять же в плане «осознания знания» уточним понятие силы из второго закона Ньютона.
Материя является основным вещественным инвариантом природы, которая никуда не исчезает и не возникает из ниоткуда. Изменяются только её свойства, что и обеспечивает всё многообразие состояния материи и многообразие явлений природы. Поэтому массу, как меру материи, не совсем корректно называть неким безликим коэффициентом пропорциональности свойств материи. Масса это скорее фундаментальная константа для каждого конкретного замкнутого взаимодействия.
Это самый значимый аргумент всех функций, описывающих явления природы, связанные с изменением свойств материи, т.к. именно масса является носителем этих свойств. Поэтому в уравнении силы (F = m * a) коэффициентом пропорциональности является не масса, как принято считать в современной физике, а ускорение, которое является коэффициентом преобразования напряжение-движение. Соответственно коэффициентом самого движения материи в уравнении импульса (P = m * V) является скорость, состоящая из двух коэффициентов (V = a * t)).
В классической же физике с массой обращаются даже как-то неприлично. То она – мера инертности, то просто всего лишь коэффициент при ускорении, то мера количества материи. И всё это ошибочно называют тремя свойствами массы. Но это не есть три свойства массы. Это всего лишь три её интерпретации в современной физике, что вовсе не одно и то же со свойствами, причём все эти интерпретации за исключением интерпретации массы, как количества вещества, достаточно спорные.
Ну, и раз уж мы поменяли векторную силу на скалярную, то в плане всё того же «осознания знания» следует уточнить и понятие самой скалярной силы. Сила это есть мера свойства материи сопротивляться нарушению свободной локализации материи в пространстве, когда две единицы материи (единичные элементы материи) претендуют на одно и то же пространство в следствие своего природного свойства – движения.
Таким образом, сила это мера нарушения локализации материи в пространстве или напряжения-тесноты. Отсюда следует, что, как мы отмечали выше, природа боится не пустоты, а тесноты.
Кроме врожденных сил инерции в природе существует ещё и механизм инерции поэлементной поддержки в виде реальных сил, которые напрямую обеспечивают реальное противодействие и поддержку движению. Однако физической основой этого механизма в любом случае является механизм врождённой инерции. Механизм инерции поэлементной поддержки легко объяснить, если взаимодействующие тела представить в виде совокупности элементарных масс материи.
На первом этапе взаимодействия в напряжение сначала превращается движение внутренних по отношению к центру взаимодействия элементов материи-массы взаимодействующих тел. При этом, как только появляется первое же напряжение, в то же самое мгновение исчезает и движение, которое в это напряжение превратилось. Однако приостановленная элементарная масса тут же получает новую порцию движения от движущейся за ней ещё не остановленной элементарной массы, что реально поддерживает совместное движение всего тела в целом, препятствуя его торможению.
На втором этапе взаимодействия при разгоне тел всё происходит ровно наоборот. Как только напряжение превращается в движение внутренней по отношению к центру взаимодействия элементарной массы, оно тут же и в такой же степени исчезает. Однако эта масса тут же начинает взаимодействовать с ещё не получившей движение внешней массой. При этом вполне реальная сила взаимодействия отнимает часть движения у первой массы, а их общее совместное движение естественно замедляется, что препятствует разгону всего тела.
Тем не менее, внешними эти вполне реальные силы инерции поэлементной поддержки являются только для отдельно взятых элементарных масс, образующих взаимодействующие тела. Для системы взаимодействующих тел в целом эти силы являются внутренними силами. Поэтому для замкнутой системы взаимодействующих тел, состоящих из элементарных масс, эти силы, как и силы врождённой инерции, являются фиктивными.
Если предположить существование мировой материальной среды, то вся Вселенная в целом в принципе является единой замкнутой системой, несмотря на её возможную бесконечность. Однако для взаимодействий внутри отдельных систем макротел сопротивление мировой материальной среды по типу инерции поэлементной поддержки можно считать внешним.
Более того, сопротивление среды, по всей видимости, играет если и не теоретически определяющую, то количественно преобладающую роль в формировании инерционного сопротивления, т.к. весь мир всегда больше любой его части. О количественно преобладающем сопротивлении среды свидетельствует огромная разница сил в разных видах взаимодействия одной и той же материи с одной и той же массой.
Например, гравитационная постоянная определяет огромную разницу сил инертного и гравитационного взаимодействия одних и тех же масс. А поскольку материя и соответственно врождённое свойство материи преобразование напряжение-движение у всех одинаковых масс одни и те же, то остаётся предположить, что эту разницу может обеспечивать только разное сопротивление среды, которая, безусловно, участвует во всех видах взаимодействий.
Силы прямого внешнего сопротивления, оказываемого ускоренному движению материальных тел со стороны мировой материальной среды в отличие от классических фиктивных сил инерции мы условно называем истинными силами инерции, т.к. они реально отбирают энергию у взаимодействия макротел. Силы инерции поэлементной поддержки внутри самих тел назовём Ньютоновскими силами инерции. Эти два вида инерции, наряду с врождёнными силами инерции и обеспечивают явление инерции в целом.
С учётом составляющей силы инерции в виде прямого сопротивления мировой материальной среды, элементы которой покидают зону взаимодействия физических тел, полное противодействие физическим телам, взаимодействующим между собой на макроуровне, завершается во внешнем открытом пространстве на уровне элементов мировой материальной среды, далеко за пределами взаимодействующих тел. Поэтому все законы природы, проявляющиеся во взаимодействии физических тел, полностью, т.е. идеально выполняются только с учётом всех элементов материи и мировой материальной среды, участвующих во взаимодействии.
***
Как мы уже отмечали выше, в классической модели неуравновешенного движения все силы являются векторными величинами. В нашей версии в природе нет никаких векторов сил. Есть общее скалярное напряжение взаимодействия, реальность которого подтвердит любой динамометр, независимо от того как это напряжение называть: обычной силой или силой инерции для разных взаимодействующих тел. При этом направление ускорения тела в любой системе координат определяет вектор относительной скорости ответного ему тела ещё перед наступлением взаимодействия при движении вдоль одной прямой и результирующий вектор скорости при пересекающихся под углом движениях.
Это объясняется тем, что хотя до взаимодействия скорость пассивного равномерного прямолинейного движения каждого из взаимодействующих тел постоянная, но именно она и определяет направление активного, т.е. ускоренного движения противоположного тела взаимодействия. Ведь направление ускоренного движения тела не зависит от направления его собственного инерционного движения, которое может и не совпадать с его ускорением.
А поскольку, превращаясь в движение напряжение тут же исчезает, то ускорение, которое в нашей версии является всего лишь коэффициентом скалярного напряжения инерции (F = m * a), так же, как и напряжение не имеет направления. Ускорение это величина скалярная, определяющая приращение скорости только по абсолютной величине, а направление новой скорости определяется скоростью исходного движения ответного тела, преобразуемого в новое движение через напряжение взаимодействия.
Из этого так же следует, что никакого деления сил на обычные силы и фиктивные силы инерции в природе не существует. Есть общее и единое для всех взаимодействующих тел статическое напряжение инерции (взаимодействия). Однако поскольку все силы возникают только при взаимодействии, в котором собственно и проявляется механизм явления инерции в виде третьего свойства материи преобразование напряжение-движение, то все силы во Вселенной принципиально являются силами инерции.
Никаких фиктивных сил инерции в природе действительно нет. Есть фиктивное разделение общего напряжения взаимодействия или инерции на противоположно направленные обычные силы и фиктивные силы инерции. Но, как показано выше, силы не имеют направления не зависимо от этого фиктивного разделения. Направление имеет только скорость движения. Естественно, что о фиктивных скоростях никто не говорит, т.к. движение это реальное свойство материи. Следовательно, не может быть и фиктивного свойства материи – силы, из которой рождаются эти вовсе не фиктивные скорости.
Третьим свойством материи – взаимным преобразованием движения (P = m * V) и силы инерции (F = m * a) можно объяснить явление инерции без каких-либо неинерциальных систем отсчёта и фиктивных сил инерции в них. Однако без мировой среды приведённое выше объяснение инерции поэлементной поддержки имеет один очень существенный недостаток.
Без внешнего связующего давления среды под вопрос ставится само существование совокупности элементарных масс в виде физических тел и вещества. Именно среда, по всей видимости, и удерживает материю в составе физических тел и вещества. Мировая материальная среда может ответить практически на все неразрешённые вопросы современной физики, а о наличии среды косвенно свидетельствует очень большое количество природных явлений, в том числе и само строение вещества:
Во-первых, что-то всё-таки очень сильно мешает проявлению законов динамики Ньютона и законов сохранения в их чистом академическом виде, да так, что иногда приходится даже сомневаться в их правильности. Для выхода из этого тупика, как раз и не хватает среды, которую физика однажды опрометчиво упразднила в угоду СТО. Восстановление прав среды в физике поможет понять физическую сущность эмпирических и разрозненных сегодня законов физики, которые фактически являются всего лишь разным проявлением единого закона мироздания – явления инерции.
Во-вторых, даже если бы среды изначально не было бы, то она непременно должна была появиться в результате распада вещества в процессе многочисленных контактных взаимодействий и процессов, происходящих в звёздах на уровне взаимодействия элементарных частиц. Да, и строение вещества свидетельствует о том, что оно собрано из чего-то элементарного, находящегося в пространстве помимо готовых тел, иначе ему просто негде находится. И нет никаких оснований считать, что весь строительный материал уже давно закончился.
Кроме того, без среды невозможно объяснить дальнодействие. Даже баллистические теории, которые на первый взгляд обходятся без среды, тем не менее, предполагают её наличие. Ведь так называемые «снаряды» дальнего контактного взаимодействия и неизбежные осколки такого взаимодействия это и есть не что иное, что в последствии становится средой.
В-третьих, как известно все физические тела и вещество, более чем на 90% состоят из пустоты. Следовательно, при контактных взаимодействиях физические тела должны как минимум очень глубоко проникать друг в друга. Однако в реальной действительности этого не наблюдается, следовательно, что-то заставляет тела останавливаться при взаимодействии задолго до сколько-нибудь значительного их проникновения друг в друга. В отсутствие какой-либо жесткой оболочки тел это может означать только одно: Во время взаимодействия пустое пространство между структурами вещества тел, заполняется чем-то упругим, принимающим участие во взаимодействии наряду со структурами вещества.
В-четвёртых, если внутренняя среда физических тел и вещества непроницаема для крупных структур вещества, то она не может не взаимодействовать, в том числе и с внешней средой пространства, какой бы разряжённой та ни была. Вот вам и парус взаимодействия. Однако после прекращения взаимодействия инерционное сопротивление исчезает. Следовательно, после прекращения взаимодействия исчезает и внутреннее наполнение тел, т.е. парус взаимодействия. Это хорошо согласуется с беспрепятственным движением практически пустых тел сквозь очень разряжённую среду практически с любыми по величине постоянными скоростями, т.е. по инерции.
В-пятых, в разных типах (видах) взаимодействия одни и те же тела, т.е. одно и то же количество одной и той же материи испытывают разное инерционное противодействие. При наличии единого для всей материи врождённого свойства – инерции это можно объяснить только различным наполнением внутреннего пространства вещества элементарными материальными частицами при взаимодействии, что сказывается на внешнем сопротивлении среды для них. Следовательно, механизм инерции во всех типах взаимодействия определяется тремя факторами: врождённым свойством материи взаимопревращения движения и силы, Ньтоновскими силами инерции поэлементной поддержки и истинными силами инерции, т.е. привнесённым сопротивлением мировой материальной среды.
И, наконец, в-шестых, поскольку разница сил взаимодействия в разных типах взаимодействия, например в инертных и гравитационных взаимодействиях просто огромна, то из этого мы должны сделать единственно возможный вывод. При едином и одинаковым для всей материи врождённом свойстве инерции, силы сопротивления среды, которые в сильных контактных взаимодействиях образуют бОльший парус, чем в слабых гравитационных взаимодействиях, играют в механизме инерции определяющую количественную роль.
Таким образом, инерционность массы, по видимому, определяется не только самой массой физического тела (врождённой инерцией), но и преимущественно материей мировой материальной среды, в которой происходит взаимодействие???
***
С учетом среды появляется возможность создать непротиворечивую модель формирования сил взаимодействия на основе явления инерции, как врождённого свойства материи и сил инерции, как сопротивления мировой материальной среды. Назовём силы сопротивления мировой материальной среды «истинными силами инерции». Это позволит дифференцировать сопротивление мировой материальной среды от лежащего в основе любого сопротивления вообще – врождённого свойства материи взаимопревращения напряжения и движения.
Но прежде чем предложить механизм инерционного сопротивления на основе мировой материальной среды следует прояснить вопрос, как среда удерживает элементарные массы в составе физических тел.
Внутренние связи физических тел и вещества, по всей видимости, обеспечиваются внешним давлением со стороны мировой материальной среды. Естественная передача энергии в природе всегда осуществляется только в прямом направлении, т.е. по ходу движения любых «носителей» энергии, будь то физические тела или элементарные частицы материи. Элементы материи естественным образом могут только выталкивать друг друга из зоны их повышенной концентрации в пространство, в котором материи меньше или она отсутствует, но никак не наоборот.
Пустое пространство не может втягивать материю по той простой причине, что в отсутствие материи в пустом пространстве втягивать в него другую материю просто нечем. Даже если материальное тело увлекает за собой другое тело по типу «буксира» происходит прямая передача энергии, т.к. тело с избыточной энергией передает её пассивному телу по ходу, своего движения «выталкивая» его в освободившееся после себя пустое пространство за счет своей геометрической конфигурации, обеспечивающей контакт типа «буксир».
Таким образом, любые внутренние связи всегда обеспечиваются внешним давлением, в то время как внутреннее разряжение имеет к этому только формально-опосредованное отношение, как место, в котором образуются физические тела с внутренними связями. За счёт внешнего давления мировой материальной среды осуществляется и упругое взаимодействие между структурными элементами физических тел, которое обеспечивает равномерное «распределение» энергии между ними по всему объёму тел после прекращения действия сил.