Оценить:
 Рейтинг: 0

Физика. Порядок вещей, или Осознание знаний. Книга 1

Жанр
Год написания книги
2017
<< 1 ... 4 5 6 7 8
На страницу:
8 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Упругое взаимодействие между структурами вещества невозможно в отсутствии инерционного сопротивления среды открытого пространства, т.к. в противном случае мы получим безопорное изменение направления движения внутренних элементов тела при отражении их от границ тела и абстрактную ничем не обеспеченную их упругую взаимосвязь между собой. Это относится и к электрическим взаимодействиям, к которым классическая физика, на наш взгляд ошибочно, относит природу сил упругости.

Ну, а теперь перейдем к возможному механизму явления инерции на основе мировой материальной среды.

По всей видимости, вещество физических тел и мировая материальная среда в конечном итоге состоят из одинаковых элементов, которые представляют собой мельчайшие первокирпичики материи на каком-то базовом для нашего мира уровне деления материи. В веществе базовые элементы присутствуют в более концентрированном виде и приобретают дополнительные связи, образуя укрупнённые структуры вещества и физических тел. Но не исключено, что в структурах вещества материальных тел присутствуют свободные элементы мировой материальной среды, подобно существованию свободных электронов в проводниках, ну, или как-либо ещё.

В невозбужденных физических телах элементы мировой материальной среды и материи компактно концентрируются в непосредственной близости к устойчивым мельчайшим структурам вещества. Свободные элементы материи должны удерживаться в веществе не столь сильно в отличие от элементов, непосредственно формирующих структурные образования вещества. Тем не менее, они должны быть связаны с материей физических тел некоторой энергией связи, удерживающей их в составе вещества (внешним давлением).

Поскольку расстояния между структурами вещества несоизмеримо больше их собственных размеров, т.е. вещество преимущественно состоит из «пустоты», то вероятность непосредственного контакта между структурами вещества и элементами среды открытого пространства относительно мала. Это обстоятельство, очевидно, и обеспечивает инерционное (в традиционном смысле) движение, т.е. практически беспрепятственное равномерное и прямолинейное движение физических тел в мировой материальной среде, что и отражено в первом законе Ньютона.

Сопротивление возникает только при непосредственном контакте элементов среды с веществом. Однако поскольку вещество состоит преимущественно из пустоты, то прямые столкновения маловероятны, а если все же и происходят, то они относительно не многочисленны и не оказывают существенного сопротивления движению. Если элементы среды проходят в непосредственной близости от вещества, то они, прежде всего, взаимодействует с его свободными элементами, находящимися вблизи структур вещества в концентрированном виде.

Поскольку свободные элементы связаны с телом относительно небольшой энергией связи, то при их взаимодействии с элементами среды, последние в соответствии с механизмом абсолютно-упругого удара останавливаются по отношению к телу и захватываются им, а собственные свободные элементы покидают тело. Такое замещение практически эквивалентно беспрепятственному сквозному прохождению элементов среды через физическое тело. И даже в очень редких случаях захвата элементы среды изменяют энергию тела на относительно незначительную величину.

С началом взаимодействия, сопровождающегося деформацией тел, внутренние связи возбуждаются. При этом собственные свободные элементы выделяются в промежуточное между структурами вещества пространство, многократно увеличивая плотность внутренней среды в физическом теле, образуя объёмный парус взаимодействия с внешней средой. Этот парус и тормозит тело, т.к. теперь мировая материальная среда оказывает ему вполне ощутимое инерционное сопротивление на достаточно большой площади сечения тела, а так же по всему его объему.

Поскольку количество высвободившихся свободных элементов и соответственно объёмная (совокупная) площадь контакта паруса взаимодействия с мировой материальной средой пропорциональны его массе, а сила сопротивления пропорциональна ещё и ускорению тела, то инерционное сопротивление прямо пропорционально массе и ускорению тела, что и отражено во втором законе Ньютона.

После прекращения взаимодействия упругая деформация разряжается, и физическое тело вновь приходит в равновесное состояние. При этом свободные элементы вновь захватываются структурами вещества, а площадь взаимодействия тела с мировой материальной средой восстанавливается до состояния невозбужденного тела, т.е. парус сворачивается. Не встречая инерционного сопротивления мировой материальной среды, практически пустое тело без паруса продолжает двигаться равномерно и прямолинейно с достигнутой на текущий момент скоростью.

Такая схема образования инертности в некоторой степени подтверждается круговым орбитальным движением и свободным падением в космосе. Поскольку в этих движениях сила тяготения воздействует на ускоряемое им тело на уровне мельчайших структур вещества, то все элементы ускоряются одновременно. При этом сколько-нибудь значительная деформация, необходимая для образования большого паруса взаимодействия, отсутствует. Однако очень слабая регулирующая ускорение деформация всё же есть. Иначе тело приобрело бы ускорение значительно большее существующего ускорения свободного падения.

Ближайшие к центру тяготения структуры вещества ускоряются быстрее, чем дальние, что приводит к радиальной деформации растяжения тела, что и регулирует ускорение за счёт отрицательной обратной связи в точном соответствии с ускорением свободного падения. Причём это справедливо, даже если радиальная толщина тела составляет всего два атома. Даже если оба атома получат очень близкие ускорения, то дальний от центра тяготения атом получит его всё же на бесконечно малую величину меньше ближнего атома. Этого вполне достаточно для растяжения, т.к. первый атом может удалиться достаточно далеко от дальнего атома, во всяком случае, в масштабе внутренних структур вещества.

В круговом орбитальном движении воздействие силы тяготения и центробежной силы инерции так же осуществляется на уровне элементарных структур. Поэтому центростремительная сила тяготения и центробежная сила инерции так же регулируются очень слабым парусом. Но и в том и в другом случае парус, обеспечивающий инертность за счёт сопротивления мировой среды, всё же есть. Поэтому ни свободное падение, ни орбитальное движение нельзя назвать третьим состоянием покоя, как предлагает считать Юрий Иванов, проводя параллель с равномерным прямолинейным движением (см. гл. 1.3 «Ритмодинамика»).

Предложенная схема образования инерционного сопротивления мировой материальной среды неуравновешенному движению физических тел за счёт свободных первокирпичиков материи в их составе позволяет достаточно непротиворечиво, хотя всего лишь схематично объяснить и физический механизм перераспределения энергии взаимодействия, а также механизм формирования сил взаимодействия. Причём этот механизм не требует никаких постулатов. Нужна только среда, которую хотя напрямую и не открыли, но косвенные признаки её существования не вызывают никаких сомнений.

При взаимодействии физических тел или вещества первоначально в контакт вступают, в том числе и плотные структуры вещества. При их деформации в каждом теле образуется парус взаимодействия, роль которого в образовании сил инерции мы рассмотрели выше. Но выделившиеся свободные элементы образуют не только связанный с телами парус взаимодействия, но и дополнительную силу взаимодействия. В результате повышенной концентрации таких элементов в зоне взаимодействия создаётся внутреннее избыточное давление мировой материальной среды. Это и есть дополнительная по сравнению с естественной инерцией сила взаимодействия.

Рассмотрим для простоты сначала механизм взаимодействия двух одинаковых по массе физических тел. Пусть так же для простоты взаимодействующие тела имеют одинаковую скорость движения во встречных направлениях. При этом под действием внутреннего избыточного давления элементарных масс, выделившихся в зону взаимодействия, взаимодействующие тела получат одинаковое ускорение в направлении противоположном своему первоначальному движению.

Причём парус взаимодействующих тел встретит повышенное инерционное сопротивление со стороны среды открытого пространства. Поэтому они получат не ускорение и скорость, обеспечиваемые только врождённым явлением инерции, а несколько меньшее ускорение и в конечном итоге одинаковую скорость, равную скорости их первоначального движения. Это полностью соответствует законам сохранения энергии, импульса и законам динамики Ньютона, которое легко обосновать, хотя бы полной симметрией такого взаимодействия.

Теперь рассмотрим разные по массе тела. Пусть для простоты взаимодействующие тела представлены параллельными рядами структурных элементов, расположенных друг напротив друга. Причём меньшее по массе тело состоит из одного ряда структурных элементов, а большее тело из двух таких же рядов. В первоначальный момент первые ряды структурных элементов взаимодействующих тел получат одинаковые ускорения. Но в большем теле есть ещё и второй ряд структурных элементов.

При взаимодействии рядов большего тела между собой выделится дополнительное количество элементарных масс. Часть из них присоединится к внутренней среде между телами, которая и образует общую движущую силу взаимодействия. Другая часть останется в промежуточном пространстве между элементами большего тела в связанном состоянии. Эта часть, как отмечалось выше и образует парус взаимодействия.

Элементы, связанные с меньшим телом так же образуют парус и подпитывают силу взаимодействия. Но поскольку в двух рядах большего тела вдвое больше структурных элементов, в нём распустится практически вдвое больший по объемной площади парус. В результате мировая материальная среда открытого пространства со стороны большего тела оказывает ему вдвое большее инерционное сопротивление, чем меньшему телу. Следовательно, при одинаковой силе внутреннего давления большее тело получит вдвое меньшее ускорение, чем меньшее тело.

Но больший парус одновременно представляет и большее препятствие для движущей силы. Это приведёт к отражению элементов силы взаимодействия от большего тела в сторону меньшего тела. При этом меньшее тело будет испытывать большую силу, чем предписывает третий закон Ньютона, а большее тело соответственно получит силу меньше законной. Получив большую силу, меньшее тело ускорится несколько больше, чем предписывает закон сохранения импульса, а большее тело после оттока движущей силы получит ускорение меньше законного.

Возросшая сила, приложенная к меньшему телу, приведёт к его дополнительной деформации и соответственно к повышению его инерционного сопротивления, что приведёт к его замедлению. Одновременно от него в сторону большего тела отразится и часть движущей силы, что так же способствует замедлению меньшего тела. При этом большее тело, получив отражённую силу обратно, наоборот дополнительно ускорится, после чего движущая сила снова отразится в сторону меньшего тела, и весь процесс повторится на меньшем энергетическом уровне, т.к. увеличение расстояния между телами и боковые объемные потери силовых элементов приводят к уменьшению внутреннего давления.

Таким образом, через регулирование сил взаимодействия осуществляется отрицательная обратная связь между импульсами взаимодействующих тел, в результате чего происходит постепенное выравнивание сил и стабилизация импульсов. Это и есть механизм формирования третьего закона Ньютона и закона сохранения импульса и энергии на основе второго закона Ньютона. Однако поскольку в меньшем теле в любом случае всегда меньшее количество выделившихся элементарных масс, то при каждом отражении к большему телу устремляется меньшее количество движущей силы и, наоборот, в сторону меньшего тела всегда отражается большая движущая сила.

Это приводит к тому, что на меньшее тело вопреки третьему закону Ньютона должна действовать большая сила, чем на большее тело. Но законы природы не могут нарушаться, ни с какой погрешностью. Недостающее до полного выполнения законов природы противодействие силе, направленной в сторону меньшего тела – есть, только оно осуществляется уже за внешней границей большего тела. Происходит это следующим образом. Элементы мировой материальной среды отражаются от паруса противоположного тела, в том числе и наружу в открытое пространство, где им уже вне тел оказывается недостающее до полного выполнения законов сохранения и законов динамики Ньютона инерционное сопротивление.

При этом если на уровне физических тел дисбаланс энергии и сил оказался в пользу меньшего тела, то за границами тел в среде открытого пространства дисбаланс отражённых элементов среды складывается в обратную сторону, т.к. от большего тела отражается больше элементов среды. При этом вся система взаимодействующих тел получает импульс движения в сторону меньшего тела (см. ниже), но с учётом всего взаимодействующего вещества во всём окружающем пространстве общий баланс восстанавливается в полном соответствии с законами сохранения и с законами Ньютона.

Таким образом, все фундаментальные законы природы выполняются только для полной совокупности всех массовых элементов непосредственно участвующих во взаимодействии. Это массовые элементы, остающиеся связанными с телами и массовые элементы, которые завершают свои взаимодействия в отрыве от тел, т.е. в среде открытого пространства. Естественно, что последние не оказывают влияние на движение самих тел, поэтому без их учёта взаимодействие тел осуществляется с отклонением от законов сохранения импульса, энергии и третьего закона Ньютона.

Предложенный механизм позволяет разрешить парадокс, состоящий в том, что неуравновешенное движение возможно в условиях кажущегося равенства сил действия и сил противодействия. В классической физике этот вопрос разрешается формально математически. Но как мы только что показали, силы противодействия инерции не менее реальные, чем силы действия, ведь даже в классической физике они оказывают вполне реальное действие на ответные тела.

Причём силы действия всегда больше сил противодействия среды, хотя бы по той простой причине, что в зоне взаимодействия между телами образуется повышенное давление свободных элементов. Именно это и приводит к неуравновешенному движению в условиях противодействия реальных, а вовсе не фиктивных сил инерции. Однако измерить мы можем только внутреннюю силу действия, например, поместив датчик давления между взаимодействующими телами. Прямые измерения на уровне мировой материальной среды современной науке недоступны.

Вот эту внутреннюю силу классическая физика фактически и принимает одновременно, как за силу действия на ускоряемое тело, так и за силу противодействия на ответное тело. А поскольку это одна и та же сила внутреннего давления, то естественно она имеет только одно количественное значение, что классическая физика ошибочно принимает за равенство сил действия и противодействия. При этом колебания волн давления, осуществляющиеся при регуляции сил взаимодействия, измерить так же невозможно, т.к. они так же происходят на уровне элементов среды. Датчик воспринимает только усреднённое общее давление уже на уровне сил упругости взаимодействующих тел.

Тем не менее, показание датчика это хотя и косвенное, но абсолютно достоверное свидетельство реальности сил инерционного противодействия, как среды, т.к. и врождённых сил инерции. В отсутствие сопротивления мировой материальной среды и врождённых сил инерции при наличии одной только силы действия, никакого сдавливания чувствительного элемента датчика силы просто не произошло бы, и датчик ничего бы не показал. Сдавливание материи может осуществляться только между двумя противодействующими силами. Конечно же, ими могут быть и врождённые силы инерции, но как показано выше их доля значительно меньше доли сопротивления истинных сил инерции парусу взаимодействия.

Мифу о равенстве сил действия и противодействия, даже при условии, что вполне реальные силы противодействия направлены на ответное тело, способствует ещё и неучтённое в классической физике перемещение самого центра масс взаимодействующих тел в сторону меньшего тела. А поскольку меньшему телу передаётся в целом большая движущая сила и большее статическое напряжение на его границе с зоной деформации, то и центр масс безо всякого сомнения смешается в сторону меньшего тела. Но, т.к. датчик силы помещается внутри движущейся системы, то он измеряет только силу внутреннего давления взаимодействия. При этом ускорение самого датчика вместе с системой в сторону меньшего тела на его показаниях естественно не отражается.

Классическая физика не только не учитывает движение самого датчика вместе с системой, но и категорически отрицает саму такую возможность, как нарушение, по её мнению, закона сохранения импульса. Однако в замкнутой системе в масштабе вселенной все эти нарушения нивелируются. Но поскольку современная физика не признаёт мировой материальной среды, то замкнутой она считает систему, состоящую только из самих взаимодействующих тел. Поэтому она неправильно понимает и законы сохранения, привязывая их исключительно только к физическим телам. Однако меньшее тело в любом случае получает большую энергию.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 ... 4 5 6 7 8
На страницу:
8 из 8

Другие электронные книги автора Александр Алексеевич Астахов