Оценить:
 Рейтинг: 0

Познание мира. Механизмы и пределы

Год написания книги
2020
<< 1 2 3 4 5 6 7 >>
На страницу:
2 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Рис. 1.4. Информационное взаимодействие: модель поведения «лампочка включена»

Итак, интуитивно очевидно, что налицо информационное взаимодействие – «приказ» светиться поступает от АБИ к НБИ и этот «приказ» не является, сам по себе, ни энергией, ни веществом, обеспечивающим характерное поведение лампочки, что есть кардинальный признак передачи информации. Перейдем теперь от интуитивного взгляда на передачу информацию к более формализованному, используя наше определение информации.

В отличие от первого примера с лампочкой, во втором лампочка включена в некоторую структуру, состоящую из трех элементов, которые связанных между собой проводниками энергии (проводами). Кроме того, источник энергии свечения переместился от человека в новую структуру с лампочкой. У новой структуры есть лишь два типа поведения – (а) свечение (рис. 1.4) и (б) отсутствие свечения (рис. 1.5). Каждый тип поведения прямо связан с характером связей между элементами структуры – (а) замкнутая электрическая сеть и (а) разомкнутая. Три элемента НБИ с их внутренними связями, представляют, в соответствии с нашим определением, модель поведения НБИ во внешней среде. Эта модель реализует два типа поведения НБИ во внешней среде – «а» или «б», в зависимости от двух возможных состояний модели – замкнутая или разомкнута электрическая цепь. Взаимодействие НБИ с АБИ осуществляется через специальный элемент – выключатель, который можно рассматривать как вход модели НБИ. Каждое взаимодействие с АБИ (нажатие выключателя) меняет поведение НБИ, которое проявляется состоянием лампочки – светит или нет.

Рис. 1.5. Информационное взаимодействие – модель поведения «лампочка выключена»

Итак, нажимая на выключатель, то есть, осуществляя чисто механическое взаимодействие с НБИ, мы одновременно активизируем модель поведения НБИ во внешней среде. Активизация модели запускает в НБИ процессы, которые определяются исключительно свойствами модели, а не характером взаимодействия объекта и субъекта в точке взаимодействия (давлением на выключатель). Внешне это сопровождается таким поведением НБИ, которое никак не может быть выведено из физического описания взаимодействия АБИ и НБИ в точке взаимодействия. Итак, все, что не вписывается в физику взаимодействия АБИ и НБИ, относится к информационному их взаимодействию.

Отсюда совершенно очевидно, что информация, как таковая, это исключительное свойство НБИ и нигде, кроме НБИ она не находится, несмотря на то, что проявляется только в процессе взаимодействия АБИ с НБИ. А раз так, то информация может быть охарактеризована лишь в терминах свойств НБИ. Можно, например, считать информацией, как мы уже определили выше, модель (модели) поведения НБИ во внешней среде и, исходя из этого определения, детализировать ее свойства, например, определяя число входов модели, ее элементы, состояния и т. п. Поскольку в нашем подходе информация это присущее НБИ внутреннее свойство, то она и не участвует в обмене энергией или веществом с АБИ, в случае информационного взаимодействия АБИ и НБИ. Фактически, информационное взаимодействие АБИ и НБИ, является односторонним – АБИ вызывает в НБИ информационные процессы (активизацию моделей поведения НБИ), в то время как сам АБИ не является элементом этих внутренних для НБИ информационных процессов, так как не есть материальный элемент модели НБИ. В противном случае, исчезает информационное взаимодействие АБИ и НБИ, как таковое (как в примере на рис. 1.3).

1.3. Отличие информационного от физического взаимодействия. Критерии важности информации

Продолжим рассмотрение примера с падающим деревом, чтобы вывести еще одно свойство информационного взаимодействия. Если бы падающее дерево придавило человека, то произошло бы не информационное взаимодействие человека и дерева, а физическое, даже если при этом человека отбросило бы от дерева в том же направление и на то же расстояние, когда ему удалось бы вовремя отпрыгнуть в сторону.

Итак, из вышеописанных примеров можно вывести признак информационного взаимодействия в противоположность физическому. Физическое взаимодействия между объектами нашего мира происходит по законам физики, в которых выполняется условие сохранения вещества и энергии. В нашем примере перемещение в пространстве тела человека после удара стволом дерева полностью описывается законами физики. Это и есть физическое взаимодействие дерева и человека, а точнее его тела. В случае информационного взаимодействия человека и дерева, когда ему удается отпрыгнуть в сторону, также наблюдаем перемещение в пространстве человека. Но в этом случае, энергия, полученная от дерева человеком (световые волны, воздействовавшие на сетчатку глаза), несравненно меньше той, которую он затратил на свое перемещение в пространстве. Отсюда признаком информационного взаимодействия каких-то объектов является невозможность объяснить их поведение обменом вещества и/или энергии, которое произошло при их контакте. То есть при информационном взаимодействии как бы не соблюдается принцип сохранения энергии и вещества.

Чтобы подсчитать разницу между полученной НБИ от АБИ энергией и энергией, затраченной НБИ на реализацию модели поведения, нужно иметь точное физическое описание активированной модели поведения НБИ. Например, в модели рефлекса отдергивания руки при прикосновении к горячей плите, следует рассчитать, сколько энергии получили от плиты холодовые рецепторы и сколько затрачено организмом энергии на отдергивание руки. Разница между полученной и затраченной человеком энергии и укажет на информационное, а не физическое взаимодействие.

Таким образом, информационное взаимодействие может наблюдаться только в том случае, если, по крайне мере, один из взаимодействующих объектов, содержит модели своего поведения, активирующиеся энергией и/или веществом, которые поступают от объекта на входы модели поведения. Следовательно, предложенная интерпретация информации, исключает какую-либо ее передачу между любыми объектами нашего мира и, более того, любое их информационное взаимодействие реализуется через передачу только энергии и вещества, точно так же как и при взаимодействии так называемых физических тел.

Критерием того, что поступившие к НБИ вещество или энергия оказали информационное воздействие (то есть были восприняты входами модели поведения), является расхождение в уровне поступившей энергии и затраченной НБИ энергии на изменение своего положения, например, в пространстве (быстрое, когда субъект мгновенно реагирует, например, отдергиванием руки, или отсроченное, например, отложив перемещение в пространстве на некоторое время, когда, к примеру, «получает информацию» о расписании движения поездов и отправляется в путь спустя несколько дней). Если происходит не информационное взаимодействие объектов, например, неожиданный удар, то перемещение объекта в пространстве будет точно соответствовать поступившей энергии.

Из вышеизложенного также вытекает, что мерой информации в НБИ может быть число входов моделей его поведения. Если считать, что каждый из входов модели может быть активирован в процессе взаимодействия АБИ и НБИ или оставаться в неактивном состоянии, тогда информация в НБИ может быть измерена, как обычно в информатике, двоичным логарифмом от числа входов моделей. В процессе информационного взаимодействия АБИ и НБИ, между поступившей к НБИ энергии, например, на зрительный анализатор, и затраченной НБИ энергией, например, на перемещение тела в пространстве, чтобы избежать замеченной опасности, имеется различие. Отсюда можно предложить новую информационную величину – меру важности поступившей от АБИ информации, как разницу между энергией, которую НБИ затратил в результате активности модели поведения и энергией полученной от АБИ.

Эту новую величину можно интерпретировать следующим образом: чем больше НБИ потратил энергии связанной с активностью его модели поведения (например, на перемещение в пространстве), тем более важна для него полученная информация.

Например, передвижение по квартире к звонящему телефону менее энергетически затратно, чем перемещение в другой конец города, вызванное информацией, «полученной» по телефону. Очевидно, что в последнем случае энергии тратится намного больше, чем в первом. А значит, информация, «полученная» по телефону более важна, чем сам телефонный звонок. В первом случае важность информации вычисляется как разность между энергией, поглощенной барабанной перепонкой, и энергией, затраченной на доставку телефонной трубки к уху, а во втором случае, энергией, затраченной на доставку своего тела в другой конец города. В последнем случае важность информации существенно выше, чем в первом. Также следует заметить, что важность информации может быть и критерием наличия информационного взаимодействия между АБИ и НБИ: если важность информации не равна нулю, то информационное взаимодействие состоялось.

Следует обратить внимание, что если положительная величина важности информации всегда свидетельствует об информационном взаимодействии, то равная нулю или даже меньше нуля его не исключает. Равную нулю важность информации при информационном взаимодействии можно наблюдать тогда, когда поступившая от АБИ к НБИ энергия в ходе такого взаимодействия активирует модель поведения, на которую тратится столько же внутренней энергии НБИ или даже меньше поступившей. То есть при равенстве поступившей и израсходованной энергии в процессе информационного взаимодействия между АБИ и НБИ как бы имитируется физическое взаимодействие субъекта и объекта, следующее закону сохранения. Для того чтобы различить в этом случае физическое взаимодействие от информационного, нужно выяснить, на что ушла поступившая к НБИ энергия, и откуда НБИ почерпнул энергию для реализации модели поведения. Если поведение НБИ реализуется за счет ранее накопленной в НБИ энергии, а не полученной в процессе актуального взаимодействия с АБИ, тогда это тоже информационное взаимодействие, но с равенством энергий поступившей и затраченной в процессе информационного взаимодействия.

Приведем пример. Допустим, мужчина увидел фотографию очень привлекательной женщины и в ответ на этот образ у него стимулировалась секреция половых гормонов. При этом можно представить, что энергия, затраченная в организме на стимуляцию нейронами головного мозга секреции половых гормонов вполне равна энергии, полученной зрительным анализатором при поступлении световых волн от фотографии к сетчатке. А может даже и меньше. Нейроны, которые произвели стимулирующие сигналы, использовали для этого синтезированную ранее энергию из глюкозы, которую доставила к ним кровь. Следовательно, поступившая мужчине (НБИ) энергия в процессе информационного взаимодействия с фотографией (АБИ), хотя и равна той, которую была затрачена организмом на реализацию модели стимуляции гормонов, но это ранее накопленная энергия.

В указанном примере имеется возможность отличить информационное взаимодействие от физического при нулевой важности информации только потому, что у нас есть представление о модели поведения НБИ. В противном случае, отличить физическое взаимодействие от информационного невозможно.

Итак, информацию можно обнаружить лишь тогда, когда у НБИ активизируется модель поведения в ответ на энергию (вещество), поступающую от АБИ. Исходя из этого положения, приведем еще пример информационного взаимодействия между неживыми объектами. Рассмотрим систему из двух компьютеров, первый из которых является АБИ, а второй НБИ, то есть от первого компьютера энергия (например, в виде электрических импульсов) поступает ко второму компьютеру, что запускает (активирует) в нем какую-то компьютерную программу (модель поведения, по нашему определению). Поскольку в НБИ-компьютере имеется программа (матмодель) его поведения в ответ на поступающие электрические импульсы от АБИ-компьютера (например, если НБИ-компьютер это робот на колесиках и, допустим, он двигается по комнате определенным образом в зависимости от последовательности электрических импульсов, поступающих от АБИ-компьютера), тогда между этими компьютерами устанавливается информационное взаимодействие, так как оно отвечает всем вышеупомянутым критериям такого взаимодействия. Во-первых, важность информации здесь больше нуля, так как энергия, полученная НБИ-компьютером от АБИ- компьютера, существенно меньше, чем затраченная на передвижение, активированное этими электрическими сигналами. И это расхождение связано с тем, что НБИ-компьютер (робот) реализует активированное АБИ-компьютером поведение (передвижение в пространстве) за счет собственных энергетических ресурсов (например, автономного источника питания робота), а не поступивших от АБИ-компьютера сигналов для модели поведения. Но если даже АБИ-компьютер и будет снабжать НБИ-компьютер энергией для передвижения вместе с сигналами, причем ровно столько, сколько нужно для осуществления этого передвижения, то несмотря на то, что важность информации в этом случае окажется равной нулю, все равно взаимодействие останется информационным.

Информационность взаимодействия сохраняется потому, что характер перемещения НБИ- компьютера по комнате определяется его внутренней моделью управления колесами, а не поступающей энергией сигналов, которые лишь активируют эту внутреннюю модель, как это происходило и в примере с выключателем.

1.4. Наблюдатель информационного взаимодействия

Без наблюдателя нельзя обнаружить информационное взаимодействие.

В отсутствии наблюдателя нет возможности оценить процесс взаимодействия АБИ и НБИ, так как оценка такого взаимодействия предполагает взгляд на них со стороны. При этом наблюдателю недостаточно просто иметь возможность созерцать взаимодействие АБИ и НБИ, а он должен быть осведомлен и о модели поведения НБИ. Иначе его возможности установить наличие информационного взаимодействия будут резко ограничены.

При отсутствии представлений о модели поведения НБИ, наблюдатель не сможет определить, например, как связана энергия, поступившая от АБИ к НБИ с энерготратами, обусловленными деятельностью модели. Если о модели информационного поведения НБИ наблюдатель не осведомлен, тогда его компетенция ограничена физикой взаимодействия АБИ и НБИ, то есть физическими законами обмена энергией и веществом между ними.

В случае информационного взаимодействия двух компьютеров, когда наблюдатель является и автором модели поведения НБИ-компьютера, наблюдатель оказывается полностью осведомленным о модели поведения НБИ (робота) (рис. 1.6). В этом случае можно очень точно измерить все характеристики информационного взаимодействия компьютеров.

Рис. 1.6. Четыре возможных наблюдателя информационного процесса, но логически оправданным должно быть введение пятого типа наблюдателя – «не человек наблюдатель»

Человек может одновременно выступать при взаимодействии с АБИ и как НБИ такого взаимодействия, и, в то же время, как наблюдатель. В этом случае он осведомлен, по крайней мере, отчасти, о своей модели, которую вызывает АБИ и потому можно назвать такого наблюдателя как внутренне и частично (или полностью, при определенных обстоятельствах) осведомленным наблюдателем. Следовательно, в зависимости от полноты осведомленности, такой наблюдатель может частично или полностью рассчитать параметры информационного взаимодействия.

Человек может быть и сторонним наблюдателем взаимодействия другого человека (НБИ) с АБИ. В этом случае внешний человек-наблюдатель может, потенциально, получить полную или частичную информацию от НБИ-человека о модели, которую вызвал АБИ. Полнота осведомленности в этом случае зависит от сложности модели и качества информационного взаимодействия НБИ и наблюдателя (например, наблюдатель может обладать менее совершенными информационными моделями, чем НБИ). Примером простых моделей являются математические формулы, с которыми НБИ и наблюдатель оперируют идентичным образом. Следовательно, в описанном случае, когда НБИ является человек, то человек-наблюдатель может рассматриваться как внешне и частично (или полностью, при определенных обстоятельствах) осведомленным наблюдателем, а значит и в этом случае возможна оценка наблюдателем, с той или иной долей точности, параметров информационного взаимодействия или, фактически, информации, содержащейся у НБИ.

Приостановим пока дальнейшее описание нашей теории информации, поскольку представленных выше сведений о ней достаточно, чтобы начать с ее помощью анализировать процессы познания окружающего мира. Приведенные ниже примеры применения новой теории информации помогут также лучше понять основные ее принципы. Более детальную проработку этой теории мы отложим на последующие главы.

Темы для размышлений:

1. В конце раздела 1.2. было указано: информационное взаимодействие АБИ и НБИ, является односторонним – АБИ вызывает в НБИ информационные процессы (активизацию моделей поведения НБИ), в то время как сам АБИ не является элементом этих внутренних для НБИ информационных процессов, так как не есть материальный элемент модели НБИ. В противном случае, исчезает информационное взаимодействие АБИ и НБИ, как таковое (как в примере на рис. 1.3).

Вопросы: Почему исчезает информационное взаимодействие, когда АБИ становится частью модели поведения НБИ? В качестве примера можно рассмотреть более сложный объект – организм человека и его реакцию, например, на падение сахара крови, что вызывает чувство голода. В этом случае и АБИ (низкий сахар) является одним из параметров организма человека, а организм, по нашему определению, казалось бы, является и НБИ. Не противоречит ли этот пример указанному определению информационного взаимодействия? Я, лично, думаю, что нет. А вы, уважаемый читатель?

2. В разделе 1.3 приведен пример с двумя компьютерами, один из которых (АБИ-компьютер) «управляет» перемещением другого компьютера (НБИ-компьютер).

Проблема. Разместим АБИ-компьютер на НБИ-компьютере, так, чтобы они вместе перемещались на одной платформе. Пусть мы не знаем, по какими правилам НБИ-компьютер перемещается в зависимости от импульсов, поступающих от АБИ-компьютера. И пусть эти правила не имеют никакого отношения к преодолению препятствий платформой и вообще никак не связаны с окружением, в котором находится платформа с двумя компьютерами. Более того, два эти компьютера на платформе, размещены в непроницаемом для нас корпусе и мы не имеем никакого представления о его содержании.

Вопросы. Возможно ли, наблюдая за перемещением описанной «коробки» на колесах, доказать, что имеет место информационном взаимодействии чего-то с чем-то? Если при заданных условиях задачи невозможно получить однозначного ответа на поставленный вопрос (что, скорее всего, именно так), то как нужно изменить эти условия, чтобы ответ оказался однозначным?

3. На рис. 1.6 представлены четыре возможных наблюдателя информационного процесса, но логически оправданным должно быть введение пятого типа наблюдателя – «не человек наблюдатель». Как известно, сложные бытовые приборы оснащены устройствами, контролирующими их работу. Например, стиральная машина самостоятельно меняет режимы работы на разных стадиях стирки. То есть создается впечатление, что в машину встроен «неживой» наблюдатель за ее деятельностью.

Вопросы. Можно ли устройства, контролирующие работу сложного прибора, считать наблюдателями информационного взаимодействия. Или, более общий вопрос – могут ли существовать в природе наблюдатели информационного процесса, кроме человека? Или, с другой стороны, какими качествами должен обладать некоторый объект, чтобы его можно было отнести к категории наблюдателя информационного процесса? Заодно, постарайтесь представить, кто на рис. 1.6. является «не человеком НБИ»? На последний вопрос можно получить ответ после прочтения остальных глав этой книги.

Раздел 2

Простые механизмы познания и теория информации

2.1. Открытие законов природы

Покажем, как наша теория информации может использоваться для описания механизмов познания человеком окружающего мира. Для наглядности, продемонстрируем это на «законе земного притяжения», который мог бы сформулировать трезво мыслящий человек на любой стадии развития общества. Такой человек постоянно наблюдает, что брошенные им предметы всегда падают обратно на землю. Следовательно, «закон земного притяжения» мог выглядеть с его точки зрения так: поднятый с земли и затем подброшенный предмет притягивается землей. Вооруженный этим «законом земного притяжения» человек не опасается, например, что брошенный бумеранг, улетит в заоблачную даль и придется, в связи с этим, изготавливать новый.

Для простоты дальнейшего изложения, будем называть модели, которые находятся у человека как НБИ познавательными или информационными. Рассмотрим, как, согласно нашей теории, используются познавательные модели банка информации для постижения «закона земного притяжения». Опишем для этого, максимально упрощенно, элементы познавательной модели о поведении камня в окружающей среде, которую использует человек, как НБИ, при изучении свойств камня (АБИ), что приводит, в конечном счете, к формулированию «закона земного притяжения». Итак, для формулирования «закона земного притяжения» достаточно извлечь из банка информации модель, состоящую из следующих элементов (рис. 2.1): трехмерное пространство, а также земля, рука и камень в этом пространстве. При этом камень может находиться в одном из трех конечных положений – на земле, в руке или над землей. Кроме того, в модели предполагается, что камень можно свободно перемещать в трехмерном пространстве. Такая познавательная модель может использоваться для описания, по крайней мере, трех очевидных явлений (рис. 2.1): 1) камень падает на землю; 2) камень устремляется вверх и исчезает; 3) камень остается в руке; 4) камень зависает между землей и рукой. Для того чтобы из возможных явлений выбрать правильное, человек должен провести эксперимент с камнем: выронить камень из руки, например. В результате многократных повторений такого эксперимента с камнем, человек наблюдает только реализацию первого из потенциально возможных явлений – падение камня на землю. В итоге, он формулирует закон земного притяжения – поднятый с земли камень всегда падает обратно на землю.

Познавательная модель с 4 вариантами возможного поведения камня должна присутствовать в мозгу человека (возможно, явно им не осознаваемо, а на уровне подсознания) до начала эксперимента, иначе ему не из чего конструировать «закон земного притяжения».

Ведь восприятие движения камня, в том числе и по направлению к земле, осуществляется в рамках большой познавательной модели окружающего мира, которая формируется у человека в процессе взаимодействия (тоже информационного и по нашей схеме) организма и окружающей среды, с момента зарождения. И если не сформировано восприятие (модель) движения камня от руки к земле, то такое движение для человека практически отсутствует. В этом случае человек бы наблюдал, вероятно, исчезновение камня, то есть пятый вариант поведения камня и сделал бы вывод, что брошенный камень исчезает неведомо куда.

Рис. 2.1. Открытие «закона земного притяжения». Информационная модель состоит из элементов: «камень», «земля» и «рука», помещенных в «трехмерное пространство». Камень может находиться «над» землей или «на» земле или «в» руке. Модель потенциально может описывать 4 явления, например, камень (1) падает на землю, (2) устремляется вверх, (3) остается в руке или (4) зависает между рукой и землей

2.2. Мера важности информации в законах природы

Итак, возвратимся к рассмотренной в разделе 1 оценке важности информации. В примере с земным притяжением, световая энергия, поступающая к зрительному анализатору от камня, запускает познавательные механизмы, которые, в конечном счете, выбирают из банка информации познавательную модель «земного притяжения», отражающую первый из четырех возможных вариантов «закона земного притяжения».

Такая модель, по сути, и оказывается носителем информации для человека о земном притяжении. Как подсчитать, сколько информации «получено» в этом эксперименте? Можно, например, допустить, что объем информации в данном случае выражается числом состояний, которые могут быть реализованы в познавательной модели – их, допустим, два (камень упал или не упал на землю), а, следовательно, имеем один бит информации.

А теперь оценим важность «закона земного притяжения», исходя из предложенных выше расчетов для важности информации. Итак, энергия, поступившая в зрительный анализатор от камня ничтожно мала. Более того, поскольку сформулированный закон далее не перепроверяется, то можно считать, что энергия тратится только на хранение закона в мозге (например, в виде выбранной модели 1), что тоже не требует большой траты энергии. А с другой стороны, каждый раз, когда человек пользуется этим законом для достижения какой-то цели, он тратит заметное количество энергии. Например, он разбивает камнем орех, на что тратит большое количество энергии, используя информацию (познавательную модель), что поднятый с земли камень будет падать на орех, а не взлетит вверх.

Следовательно, при каждом использовании закона, его важность возрастает, так как увеличивается разница между энергией, которая была затрачена на «получение» информации (активацию познавательной модели) об этом законе и энергией, которая расходуется при применении этого закона. Вероятно, в этом кроется причина того, что мы так почитаем людей, открывших законы природы, то есть извлекших из своего банка информации познавательную модель, пригодную для многоразового использования и легко распространяемую среди людей.
<< 1 2 3 4 5 6 7 >>
На страницу:
2 из 7