Inferences from the Glacial Phenomena of Scotland.—Now all these phenomena taken together render it certain that the whole of Scotland was once buried in a vast sea of ice, out of which only the highest mountains raised their summits. There is absolutely no escape from this conclusion; for the facts which lead to it are not local—found only in one spot or one valley—but general throughout the entire length and breadth of Scotland; and are besides supported by such a mass of detailed corroborative evidence as to amount to absolute demonstration. The weight of this vast ice-sheet, at least three thousand feet in maximum thickness, and continually moving seaward with a slow grinding motion like that of all existing glaciers, must have ground down the whole surface of the country, especially all the prominences, leaving the rounded rocks as well as the grooves and striæ we still see marking the direction of its motion. All the loose stones and rock-masses which lay on the surface would be pressed into the ice; the harder blocks would serve as scratching and grinding tools, and would thus themselves become rounded, scratched, and striated, as we see them, while all the softer masses would be ground up into impalpable mud along with the material planed off the rocky projections of the country, leaving them in the condition of roches moutonnées.
The peculiar characters of the "till," its fineness and tenacity, correspond closely with the fine matter which now issues from under all glaciers, making the streams milky white, yellow, or brown, according to the nature of the rock. The sediment from such water is a fine unctuous, sticky deposit, only needing pressure to form it into a tenacious clay; and when "till" is exposed to the action of water, it dissolves into a similar soft, sticky, unctuous mud. The present glaciers of the Alps, being confined to valleys which carry off a large quantity of drainage water, lose this mud perhaps as rapidly as it is formed; but when the ice covered the whole country, there was comparatively little drainage water, and thus the mud and stones collected in vast compact masses in all the hollows, and especially in the lower flat valleys, so that, when the ice retreated, the whole country was more or less covered with it. It was then, no doubt, rapidly denuded by rain and rivers, but, as we have seen, great quantities remain to the present day to tell the tale of its wonderful formation.[35 - This view of the formation of "till" is that adopted, by Dr. Geikie, and upheld by almost all the Scotch, Swiss, and Scandinavian geologists. The objection however is made by many eminent English geologists, including the late Mr. Searles V. Wood, Jun., that mud ground off the rocks cannot remain beneath the ice, forming sheets of great thickness, because the glacier cannot at the same time grind down solid rock and yet pass over the surface of soft mud and loose stones. But this difficulty will disappear if we consider the numerous fluctuations in the glacier with increasing size, and the additions it must have been constantly receiving as the ice from one valley after another joined together, and at last produced an ice-sheet covering the whole country. The grinding power is the motion and pressure of the ice, and the pressure will depend on its thickness. Now the points of maximum thickness must have often changed their positions, and the result would be that the matter ground out in one place would be forced into another place where the pressure was less. If there were no lateral escape for the mud, it would necessarily support the ice over it just as a water-bed supports the person lying on it; and when there was little drainage water, and the ice extended, say, twenty miles in every direction from a given part of a valley where the ice was of less than the average thickness, the mud would necessarily accumulate at this part simply because there was no escape for it. Whenever the pressure all round any area was greater than the pressure on that area, the débris of the surrounding parts would be forced into it, and would even raise up the ice to give it room. This is a necessary result of hydrostatic pressure. During this process the superfluous water would no doubt escape through fissures or pores of the ice, and would leave the mud and stones in that excessively compressed and tenacious condition in which the "till" is found. The unequal thickness and pressure of the ice above referred to would be a necessary consequence of the inequalities in the valleys, now narrowing into gorges, now opening out into wide plains, and again narrowed lower down; and it is just in these openings in the valleys that the "till" is said to be found, and also in the lowlands where an ice-sheet must have extended for many miles in every direction. In these lowland valleys the "till" is both thickest and most wide-spread, and this is what we might expect. At first, when the glaciers from the mountains pushed out into these valleys, they would grind out the surface beneath them into hollows, and the drainage-water would carry away the débris. But when they spread all over the surface from sea to sea, and there was little or no drainage water compared to the enormous area covered with ice, the great bulk of the débris must have gathered under the ice wherever the pressure was least, and the ice would necessarily rise as it accumulated. Some of the mud would no doubt be forced out along lines of least resistance to the sea, but the friction of the stone-charged "till" would be so enormous that it would be impossible for any large part of it to be disposed of in this way.]
There is good evidence that, when the ice was at its maximum, it extended not only over the land, but far out to sea, covering all the Scottish islands, and stretching in one connected sheet to Ireland and Wales, where all the evidences of glaciation are as well marked as in Scotland, though the ice did not of course attain quite so great a thickness.[36 - That the ice-sheet was continuous from Scotland to Ireland is proved by the glacial phenomena in the Isle of Man, where "till" similar to that in Scotland abounds, and rocks are found in it which must have come from Cumberland and Scotland, as well as from the north of Ireland. This would show that glaciers from each of these districts reached the Isle of Man, where they met and flowed southwards down the Irish Sea. Ice-marks are traced over the tops of the mountains which are nearly 2,000 feet high. (See A Sketch of the Geology of the Isle of Man, by John Horne, F.G.S. Trans. of the Edin. Geol. Soc. Vol. II. pt. 3, 1874.)]
It is evident that the change of climate requisite to produce such marvellous effects in the British Isles could not have been local, and we accordingly find strikingly similar proofs that Scandinavia and all northern Europe have also been covered with a huge ice-sheet; while we have already seen that a similar gigantic glacier buried the Alps, carrying granitic blocks to the Jura, where it deposited them at a height of 3,450 feet above the sea; while to the south, in the plains of Italy, the terminal moraines left by the retreating glaciers have formed extensive hills, those of Ivrea the work of the great glacier from the Val d'Aosta being fifteen miles across and from 700 to 1,500 feet high.
Glacial Phenomena in North America.—In North America the marks of glaciation are even more extensive and striking than in Europe, stretching over the whole of Canada and to the south of the great lakes as far as latitude 39°. There is, in all these countries, a wide-spread deposit like the "till" of Scotland, produced by the grinding of the great ice-sheet when it was at its maximum thickness; and also extensive beds of moraine-matter, true moraines, and travelled blocks, left by the glaciers as they retreated towards the mountains and finally withdrew into the upland valleys. There are, also, in Britain, Scandinavia, and North America, proofs of the submersion of the land beneath the sea to a depth of upwards of a thousand feet; but this is a subject we need not here enter upon, as our special object is to show the reality and amount of that wonderful and comparatively recent change of climate termed the glacial epoch.
Many persons, even among scientific men, who have not given much attention to the question, look upon the whole subject of the glacial epoch as a geological theory made to explain certain phenomena which are otherwise a puzzle; and they would not be much surprised if they were some day told that it was all a delusion, and that Mr. So-and-so had explained the whole thing in a much more simple way. It is to prevent my readers being imposed upon by any such statements or doubts, that I have given this very brief and imperfect outline of the nature, extent, and completeness of the evidence on which the existence of the glacial epoch depends. There is perhaps no great conclusion in any science which rests upon a surer foundation than this; and if we are to be guided by our reason at all in deducing the unknown from the known, the past from the present, we cannot refuse our assent to the reality of the glacial epoch of the northern hemisphere in all its more important features.
Effects of the Glacial Epoch on Animal Life: Warm and Cold Periods. —It is hardly necessary to point out what an important effect this great climatal cycle must have had upon all living things. When an icy mantle crept gradually over much of the northern hemisphere till large portions of Europe and North America were reduced to the condition of Greenland now, the greater part of the animal life must have been driven southward, causing a struggle for existence which must have led to the extermination of many forms, and the migration of others into new areas. But these effects must have been greatly multiplied and intensified if, as there is very good reason to believe, the glacial epoch itself—or at least the earlier and later phases of it—consisted of two or more alternations of warm and cold periods.
The evidence that such was the case is very remarkable. The "till," as we have seen, could only have been formed when the country was entirely buried under a large ice-sheet of enormous thickness, and when it must therefore have been, in all the parts so covered, almost entirely destitute of animal and vegetable life. But in several places in Scotland fine layers of sand and gravel with beds of peaty matter, have been found resting on "till" and again covered by "till." Sometimes these intercalated beds are very thin, but in other cases they are twenty or thirty feet thick, and in them have been found remains of the extinct ox, the Irish elk, the horse, reindeer and mammoth. Here we have evidence of two distinct periods of intense cold, and an intervening milder period sufficiently prolonged for the country to become covered with vegetation and stocked with animal life. In some districts borings have proved the existence of no less than four distinct formations of "till" separated from each other by beds of sand from two to twenty feet in thickness.[37 - The Great Ice Age, p. 177.] Facts of a similar nature have been observed in other parts of our islands. In the east of England, Mr. Skertchly (of the Geological Survey) enumerates four distinct boulder clays with intervening deposits of gravels and sands.[38 - These are named, in descending order, Hessle Boulder Clay, Purple Boulder Clay, Chalky Boulder Clay, and Lower Boulder Clay—below which is the Norwich Crag.] Mr. Searles V. Wood, Jun., classes the most recent (Hessle) boulder clay as "post-glacial," but he admits an intervening warmer period, characterised by southern forms of mollusca and insects, after which glacial conditions again prevailed with northern types of mollusca.[39 - "On the Climate of the Post-Glacial Period." Geological Magazine, 1872, pp. 158, 160.] Elsewhere he says: "Looking at the presence of such fluviatile mollusca as Cyrena fluminalis and Unio littoralis and of such mammalia as the hippopotamus and other great pachyderms, and of such a littoral Lusitanian fauna as that of the Selsea bed where it is mixed up with the remains of some of those pachyderms, as well as of some other features, it has seemed to me that the climate of the earlier part of the post-glacial period in England was possibly even warmer than our present climate; and that it was succeeded by a refrigeration sufficiently severe to cause ice to form all round our coasts, and glaciers to accumulate in the valleys of the mountain districts; and that this increased severity of climate was preceded, and partially accompanied, by a limited submergence, which nowhere apparently exceeded 300 feet, and reached that amount only in the northern counties of England."[40 - Geological Magazine, 1876, p. 396.] This decided admission of an alternation of warm and cold climates since the height of the glacial epoch by so cautious a geologist as Mr. Wood is very important, as is his statement of an accompanying depression of the land, accompanying the increased cold, because many geologists maintain that a greater elevation of the land is the true and sufficient explanation of glacial periods.
Further evidence of this alternation is found both in the Isle of Man and in Ireland, where two distinct boulder clays have been described with intervening beds of gravels and sands.
Palæontological Evidence of Alternate Cold and Warm Periods.—Especially suggestive of a period warmer than the present, immediately following glacial conditions, is the occurrence of the hippopotamus in caves, brick-earths, and gravels of palæolithic age. Entire skeletons of this animal have been found at Leeds in a bed of dark blue clay overlaid by gravel. Further north at Kirkdale cave, in N. Lat. 54° 15′, remains of the hippopotamus occur abundantly along with those of the Elephas antiquus, Rhinoceros hemitœchus, reindeer, bear, horse, and other quadrupeds, and with countless remains of the hyænas which devoured them; while it has also been found in cave deposits in Glamorganshire, at Durdham Down near Bristol, and in the post-Pliocene drifts of England and France.
The fact of the hippopotamus having lived at 54° N. Lat. in England immediately after the glacial period seems quite inconsistent with a mere gradual amelioration of climate from that time till the present day. The entirely tropical distribution of the existing animal and the large quantity of vegetable food which it requires both indicate a much warmer climate than now prevails in any part of Europe. The problem, however, is complicated by the fact that, both in the cave-deposits and river gravels, its remains are often found associated with those of animals that imply a cold climate, such as the reindeer, the mammoth, or the woolly rhinoceros. At this time the British Isles were joined to the Continent, and a great river formed by the union of the Rhine, the Elbe and all the eastern rivers of England, flowed northward through what is now the German Ocean. The hippopotamus appears to have been abundant in Central Europe before the glacial epoch, but during the height of the cold was probably driven to the south of France, whence it may have returned by way of the Rhone valley, some of the tributaries of that river approaching those of the Rhine within a mile or two a little south-west of Mulhausen, whence it would easily reach Yorkshire. Professor Boyd Dawkins supposes that at this time our summers were warm, as in Middle Asia and the United States, while the winters were cold, and that the southern and northern animals migrated to and fro over the great plains which extended from Britain to the Continent. The following extract indicates how such a migration was calculated to bring about the peculiar association of sub-tropical and arctic forms.
"It must not, however, be supposed that the southern animals migrated from the Mediterranean area as far north as Yorkshire in the same year, or the northern as far south as the Mediterranean. There were, as we shall see presently, secular changes of climate in Pleistocene Europe, and while the cold was at its maximum the arctic animals arrived at the southern limit, and while it was at its minimum the spotted hyæna and hippopotamus and other southern animals roamed to their northern limit. Thus every part of the middle zone has been successively the frontier between the northern and southern groups, and consequently their remains are mingled together in the caverns and river-deposits, under conditions which prove them to have been contemporaries in the same region. In some of the caverns, such as that of Kirkdale, the hyæna preyed upon the reindeer at one time of the year and the hippopotamus at another. In this manner the association of northern and southern animals may be explained by their migration according to the seasons; and their association over so wide an area as the middle zone, by the secular changes of climate by which each part of the zone in turn was traversed by the advancing and retreating animals."[41 - Early Man in Britain and his Place in the Tertiary Period, p. 113.]
When we consider that remains of the hippopotamus have been found in the caves of North Wales and Bristol as well as in those of Yorkshire, associated in all with the reindeer and in some with the woolly rhinoceros or the mammoth, and that the animal must have reached these localities by means of slow-flowing rivers or flooded marshes by very circuitous routes, we shall be convinced that these long journeys from the warmer regions of South Europe could not have been made during the short summers of the glacial period. Thus the very existence of such an animal in such remote localities closely associated with those implying almost an arctic winter climate appears to afford a strong support to the argument for the existence of warm inter-glacial or post-glacial periods.
Evidence of Interglacial Warm Periods on the Continent and in North America.—Besides the evidence already adduced from our own islands, many similar facts have been noted in other countries. In Switzerland two glacial periods are distinctly recognised, between which was a warm period when vegetation was so luxuriant as to form beds of lignite sufficiently thick to be worked for coal. The plants found in these deposits are similar to those now inhabiting Switzerland—pines, oaks, birches, larch, etc., but numerous animal remains are also found, showing that the country was then inhabited by an elephant (Elephas antiquus), a rhinoceros (Rhinoceros megarhinus), the urus (Bos primigenius), the red deer (Cervus elephas), and the cave-bear, (Ursus spelœus); and there were also abundance of insects.[42 - Heer's Primæval World of Switzerland Vol. II., pp. 148-168.]
In Sweden also there are two "tills," the lower one having been in places partly broken up and denuded before the upper one was deposited, but no interglacial deposits have yet been found. In North America more complete evidence has been obtained. On the shores of Lake Ontario sections are exposed showing three separate beds of "till" with intervening stratified deposits, the lower one of which has yielded many plant remains and fresh-water organisms. These deposits are seen to extend continuously for more than nine miles, and the fossiliferous interglacial beds attain a thickness of 140 feet. Similar beds have been discovered near Cleveland, Ohio, consisting, first of "till" at the lake-level, secondly of about 48 feet of sand and loam, and thirdly of unstratified "till" full of striated stones—six feet thick.[43 - Dr. James Geikie in Geological Magazine, 1878, p. 77.] On the other side of the continent, in British Columbia, Mr. G. M. Dawson, geologist to the North American Boundary Commission, has discovered similar evidence of two glaciations divided from each other by a warm period.
This remarkable series of observations, spread over so wide an area, seems to afford ample proof that the glacial epoch did not consist merely of one process of change, from a temperate to a cold and arctic climate, which having reached a maximum, then passed slowly and completely away; but that there were certainly two, and probably several more alternations of arctic and temperate climates.
It is evident, however, that if there have been, not two only, but a series of such alternations of climate, we could not possibly expect to find more than the most slender indications of them, because each succeeding ice-sheet would necessarily grind down or otherwise destroy much of the superficial deposits left by its predecessors, while the torrents that must always have accompanied the melting of these huge masses of ice would wash away even such fragments as might have escaped the ice itself. It is a fortunate thing therefore, that we should find any fragments of these interglacial deposits containing animal and vegetable remains; and just as we should expect, the evidence they afford seems to show that the later phase of the cold period was less severe than the earlier. Of such deposits as were formed on land during the coming on of the glacial epoch when it was continually increasing in severity hardly a trace has been preserved, because each succeeding extension of the ice being greater and thicker than the last, destroyed what had gone before it till the maximum was reached.
Migrations and Extinction of Organisms caused by the Glacial Epoch.—Our last glacial epoch was accompanied by at least two considerable submergences and elevations of the land, and there is some reason to think, as we have already explained, that the two classes of phenomena are connected as cause and effect. We can easily see how such repeated submergences and elevations would increase and aggravate the migrations and extinctions that a glacial epoch is calculated to produce. We can therefore hardly fail to be right in attributing the wonderful changes in animal and vegetable life that have occurred in Europe and N. America between the Miocene Period and the present day, in part at least, to the two or more cold epochs that have probably intervened. These changes consist, first, in the extinction of a whole host of the higher animal forms, and secondly, in a complete change of types due to extinction and migration, leading to a much greater difference between the vegetable and animal forms of the eastern and western hemisphere than before existed. Many large and powerful mammalia lived in our own country in Pliocene times and apparently survived a part of the glacial epoch; but when it finally passed away they too had disappeared, some having become altogether extinct while others continued to exist in more southern lands. Among the first class are the sabre-toothed tiger, the extinct Siberian camel (Merycotherium), three species of elephant, two of rhinoceros, two bears, five species of deer, and the gigantic beaver; among the latter are the hyæna, bear, and lion, which are considered to be only varieties of those which once inhabited Britain. Down to Pliocene times the flora of Europe was very similar to that which now prevails in Eastern Asia and Eastern North America. The late Professor Asa Gray has pointed out that hundreds of species of trees and shrubs of peculiar genera which still flourish in those countries are now completely wanting in Europe, and there is good reason to believe that these were exterminated during the glacial period, being cut off from a southern migration, first by the Alps, and then by the Mediterranean; whereas in eastern America and Asia the mountain chains run in a north and south direction, and there is nothing to prevent the flora from having been preserved by a southward migration into a milder region.[44 - This subject is admirably discussed in Professor Asa Gray's Lecture on "Forest Geography and Archæology" in the American Journal of Science and Arts, Vol. XVI. 1878.]
Our next two chapters will be devoted to a discussion of the causes which brought about the glacial epoch, and that still more extraordinary climatic phenomenon—the mild climate and luxuriant vegetation of the Arctic zone. If my readers will follow me with the care and attention so difficult and interesting a problem requires and deserves, they will find that I have grappled with all the more important facts which have to be accounted for, and have offered what I believe is the first complete and sufficient explanation of them. The important influence of climatal changes on the dispersal of animals and plants is a sufficient justification for introducing such a discussion into the present volume.
CHAPTER VIII
THE CAUSES OF GLACIAL EPOCHS
Various Suggested Causes—Astronomical Causes of Changes of Climate—Difference of Temperature caused by Varying Distance of the Sun—Properties of Air and Water, Snow and Ice, in Relation to Climate—Effects of Snow on Climate—High Land and Great Moisture Essential to the Initiation of a Glacial Epoch—Perpetual Snow nowhere Exists on Lowlands—Conditions Determining the Presence or Absence of Perpetual Snow—Efficiency of Astronomical Causes in Producing Glaciation—Action of Meteorological causes in Intensifying Glaciation—Summary of Causes of Glaciation—Effect of Clouds and Fog in cutting off the Sun's Heat—South Temperate America as Illustrating the Influence of Astronomical Causes on Climate—Geographical Changes how far a Cause of Glaciation—Land acting as a Barrier to Ocean-currents—The theory of Interglacial Periods and their Probable Character—Probable Effect of Winter in Aphelion on the Climate of Britain—The Essential Principle of Climatal Change Restated—Probable Date of the last Glacial Epoch—Changes of the Sea-level dependent on Glaciation—The Planet Mars as bearing on the Theory of Excentricity as a Cause of Glacial Epochs.
No less than seven different causes have been at various times advanced to account for the glacial epoch and other changes of climate which the geological record proves to have taken place. These, as enumerated by Mr. Searles V. Wood, Jun., are as follows:—
1. A decrease in the original heat of our planet.
2. Changes in the obliquity of the ecliptic.
3. The combined effect of the precession of the equinoxes and of the excentricity of the earth's orbit.
4. Changes in the distribution of land and water.
5. Changes in the position of the earth's axis of rotation.
6. A variation in the amount of heat radiated by the sun.
7. A variation in the temperature of space.
Of the above, causes (1) and (2) are undoubted realities; but it is now generally admitted that they are utterly inadequate to produce the observed effects. Causes (5) (6) and (7) are all purely hypothetical, for though such changes may have occurred there is no evidence that they have occurred during geological time; and it is besides certain that they would not, either singly or combined, be adequate to explain the whole of the phenomena. There remain causes (3) and (4), which have the advantage of being demonstrated facts, and which are universally admitted to be capable of producing some effect of the nature required, the only question being whether, either alone or in combination, they are adequate to produce all the observed effects. It is therefore to these two causes that we shall confine our inquiry, taking first those astronomical causes whose complex and wide reaching effects have been so admirably explained and discussed by Dr. Croll in numerous papers and in his work—"Climate and Time in their Geological Relations."
DIAGRAM SHOWING THE ALTERED POSITION OF THE POLES AT INTERVALS OF 10,500 YEARS PRODUCED BY THE PRECESSION OF THE EQUINOXES AND THE MOTION OF THE APHELION; AND ITS EFFECT ON CLIMATE DURING A PERIOD OF HIGH EXCENTRICITY.
Astronomical Causes of Changes of Climate.—The earth moves in an elliptical orbit round the sun, which is situated in one of the foci of the ellipse, so that the distance of the sun from us varies during the year to a considerable amount. Strange to say we are now three millions of miles nearer to the sun in winter than in summer, while the reverse is the case in the southern hemisphere; and this must have some effect in making our northern winters less severe than those of the south temperate zone. But the earth moves more rapidly in that part of its orbit which is nearer to the sun, so that our winter is not only milder, but several days shorter, than that of the southern hemisphere. The distribution of land and sea and other local causes prevent us from making any accurate estimate of the effects due to these differences; but there can be no doubt that if our winter were as long as our summer is now and we were also three million miles further from the sun at the former period, a very decided difference of climate would result—our winter would be colder and longer, our summer hotter and shorter. Now there is a combination of astronomical revolutions (the precession of the equinoxes and the motion of the aphelion) which actually brings this change about every 10,500 years, so that after this interval the condition of the two hemispheres is reversed as regards nearness to the sun in summer, and comparative duration of summer and winter; and this change has been going on throughout all geological periods. (See Diagram.) The influence of the present phase of precession is perhaps seen in the great extension of the antarctic ice-fields, and the existence of glaciers at the sea-level in the southern hemisphere, in latitudes corresponding to that of England; but it is not supposed that similar effects were produced with us at the last cold period, 10,500 years ago, because we are exceptionally favoured, by the Gulf-stream warming the whole North Atlantic ocean and by the prevalence of westerly winds which convey that warmth to our shores; and also by the comparatively small quantity of high land around the North Pole which does not encourage great accumulations of ice. But besides this change in the relation of our seasons to the earth's aphelion and perihelion there is another and still more important astronomical factor in the change of magnitude of the excentricity itself. This varies very largely, though very slowly, and it is now nearly at a minimum. It also varies very irregularly; but its amount has been calculated for several million years back. Fifty thousand years ago it was rather less than it is now, but it then increased, and when we come to a hundred thousand years ago there is a difference of eight and a half millions of miles between our distance from the sun in aphelion and perihelion (as the most distant and nearest points of the earth's orbit are termed). At a hundred and fifty thousand years back it had decreased somewhat—to six millions of miles; but then it increased again, till at two hundred thousand years ago it was ten and a quarter, and at two hundred and ten thousand years ten and a half millions of miles. By reference to the accompanying diagram, which includes the last great period of excentricity, we find, that for the immense period of a hundred and sixty thousand years (commencing about eighty thousand years ago) the excentricity was very great, reaching a maximum of three and a half times its present amount at almost the remotest part of this period, at which time the length of summer in one hemisphere and of winter in the other would be nearly twenty-eight days in excess. Now, during all this time, our position would change, as above described (and as indicated on the diagram), every ten thousand five hundred years; so that we should have alternate periods of very long and cold winters with short hot summers, and short mild winters with long cool summers. In order to understand the important effects which this would produce we must ascertain two things—first, what actual difference of temperature would be caused by varying distances of the sun, and, secondly, what are the properties of snow and ice in regard to climate.
DIAGRAM OF EXCENTRICITY AND PRECESSION.
The dark and light bands mark the phases of precession, the dark showing short mild winters, and the light long cold winters, the contrast being greater as the excentricity is higher. The horizontal dotted line shows the amount of the present excentricity. The figures show the maxima and minima of excentricity during the last 300,000 years from Dr. Croll's Tables.
Differences of Temperature Caused by Varying Distances of the Sun.—On this subject comparatively few persons have correct ideas owing to the unscientific manner in which we reckon heat by our thermometers. The zero of Fahrenheit's thermometer is thirty-two degrees below the freezing point of water, and that of the centigrade thermometer, the freezing point itself, both of which are equally misleading when applied to cosmical problems. If we say that the mean temperature of a place is 50° F., or 10° C., these figures tell us nothing of how much the sun warms that place, because if the sun were withdrawn the temperature would fall far below either of the zero points. In the last Arctic Expedition a temperature of -74° F. was registered, or 106° below the freezing point of water; and as at the same time the earth, at a depth of two feet, was only, -13° F. and the sea water +28° F., both influencing the temperature of the air, we may be sure that even this intense cold was not near the possible minimum temperature. By various calculations and experiments which cannot be entered upon here, it has been determined that the temperature of space, independent of solar (but not of stellar) influence, is about -239° F., and physicists almost universally adopt this quantity in all estimates of cosmical temperature. It follows, that if the mean temperature of the earth's surface at any time is 50° F. it is really warmed by the sun to an amount measured by 50 + 239 = 289° F., which is hence termed its absolute temperature. Now during the time of the glacial epoch the greatest distance of the sun in winter was 98¼ millions of miles, whereas it is now, in winter, only 91½ millions of miles, the mean distance being taken as 93 million miles. But the quantity of heat received from the sun is inversely as the square of the distance, so that it would then be in the proportion of 8,372 to 9,613 now, or nearly one seventh less than its present amount. The mean temperature of England in January is about 37° F., which equals 276° F. of absolute temperature. But the above-named fraction of 276° is 237, the difference, 39, representing the amount which must be deducted to obtain the January temperature during the glacial epoch, which will therefore be -2° F. But this is a purely theoretic result. The actual temperature at that time might have been very different from this, because the temperature of a place does not depend so much on the amount of heat it receives directly from the sun, as on the amount brought to it or carried away from it by warm or cold winds. We often have it bitterly cold in the middle of May when we are receiving as much sun heat as many parts of the tropics, but we get cold winds from the iceberg-laden North Atlantic, and this largely neutralises the effect of the sun. So we often have it very mild in December if south-westerly winds bring us warm moist air from the Gulf-stream. But though the above method does not give correct results for any one time or place, it will be more nearly correct for very large areas, because all the sensible surface-heat which produces climates necessarily comes from the sun, and its proportionate amount may be very nearly calculated in the manner above described. We may therefore say, generally, that during our winter, at the time of the glacial epoch, the northern hemisphere was receiving so much less heat from the sun as was calculated to lower its surface temperature on an average about 39° F., while during the height of summer of the same period it would be receiving so much more heat as would suffice, other conditions being equal, to raise its mean temperature about 48° above what it is now. The winter, moreover, would be long and the summer short, the difference being twenty-six days.
We have here certainly an amount of cold in winter amply sufficient to produce a glacial period,[45 - In a letter to Nature of October 30th, 1879, the Rev. O. Fisher calls attention to a result arrived at by Pouillet, that the temperature which the surface of the ground would assume if the sun were extinguished would be -128° F. instead of -239° F. If this corrected amount were used in our calculations, the January temperature of England during the glacial epoch would come out 17° F., and this Mr. Fisher thinks not low enough to cause any extreme difference from the present climate. In this opinion, however, I cannot agree with him. On the contrary, it would, I think, be a relief to the theory were the amounts of decrease of temperature in winter and increase in summer rendered more moderate, since according to the usual calculation (which I have adopted) the differences are unnecessarily great. I cannot therefore think that this modification of the temperatures, should it be ultimately proved to be correct (which is altogether denied by Dr. Croll), would be any serious objection to the adoption of Dr. Croll's theory of the Astronomical and Physical causes of the Glacial Epoch.The reason of the theoretical increase of summer heat being greater than the decrease of winter cold is because we are now nearest the sun in winter and farthest in summer, whereas we calculate the temperatures of the glacial epoch for the phase of precession when the aphelion was in winter. A large part of the increase of temperature would no doubt be used up in melting ice and evaporating water, so that there would be a much less increase of sensible heat; while only a portion of the theoretical lowering of temperature in winter would be actually produced owing to equalising effect of winds and currents, and the storing up of heat by the earth and ocean.] especially as this cold would be long continued; but at the same time we should have almost tropical heat in summer, although that season would be somewhat shorter. How then, it may be asked, could such a climate have the effect supposed? Would not the snow that fell in winter be all melted by the excessively hot summer? In order to answer this question we must take account of certain properties of water and air, snow and ice, to which due weight has not been given by writers on this subject.
Properties of Air and Water, Snow and Ice, in Relation to Climate.—The great aerial ocean which surrounds us has the wonderful property of allowing the heat-rays from the sun to pass through it without its being warmed by them; but when the earth is heated the air gets warmed by contact with it, and also to a considerable extent by the heat radiated from the warm earth, because, although pure dry air allows such dark heat-rays to pass freely, yet the aqueous vapour and carbonic acid in the air intercept and absorb them. But the air thus warmed by the earth is in continual motion owing to changes of density. It rises up and flows off, owing to the greater weight of the cooler air which forces it up and takes its place; and thus heat can never accumulate in the atmosphere beyond a very moderate degree, the excessive sun-heat of the tropics being much of it carried away to the upper atmosphere and radiated into space. Water also is very mobile; and although it receives and stores up a great deal of heat, it is for ever dispersing it over the earth. The rain which brings down a certain portion of heat from the atmosphere, and which often absorbs heat from the earth on which it falls, flows away in streams to the ocean; while the ocean itself, constantly impelled by the winds, forms great currents, which carry off the surplus heated water of the tropics to the temperate and even to the polar regions, while colder water flows from the poles to ameliorate the heat of the tropics. An immense quantity of sun-heat is also used up in evaporating water, and the vapour thus produced is conveyed by the aerial currents to distant countries, where, on being condensed into rain, it gives up much of this heat to the earth and atmosphere.
The power of water in carrying away heat is well exhibited by the fact of the abnormally high temperature of arid deserts and of very dry countries generally; while the still more powerful influence of moving air may be appreciated, by considering the effects of even our northern sun in heating a tightly-closed glass house to far above the temperature produced by the vertical sun of the equator where the free air and abundance of moisture exert their beneficial influence. Were it not for the large proportion of the sun's heat carried away by air and water the tropics would become uninhabitable furnaces—as would indeed any part of the earth where the sun shone brightly throughout a summer's day.
We see, therefore, that the excess of heat derived from the sun at any place cannot be stored up to an important amount owing to the wonderful dispersing agency of air and water; and though some heat does penetrate the ground and is stored up there, this is so little in proportion to the whole amount received, and the larger part of it is so soon given out from the surface layers, that any surplus heat that may be thus preserved during one summer of the temperate zones rarely or never remains in sufficient quantity to affect the temperature of the succeeding summer, so that there is no such thing as an accumulation of earth-heat from year to year. But, though heat cannot, cold can be stored up to an almost unlimited amount, owing to the peculiar property water possesses of becoming solid at a moderately low temperature; and as this is a subject of the very greatest importance to our inquiry—the whole question of the possibility of glacial epochs and warm periods depending on it—we must consider it in some detail.
Effects of Snow on Climate.—Let us then examine the very different effects produced by water falling as a liquid in the form of rain, or as a solid in the form of snow, although the two may not differ from each other more than two or three degrees in temperature. The rain, however much of it may fall, runs off rapidly into streams and rivers, and soon reaches the ocean, a small portion only sinking into the earth and another portion evaporating into the atmosphere. If cold it cools the air and the earth somewhat while passing through or over them, but produces no permanent effect on temperature, because a few hours of sunshine restore to the air or the surface-soil all the heat they had lost. But if snow falls for a long time, the effect, as we all know, is very different, because it has no mobility. It remains where it fell and becomes compacted into a mass, and it then keeps the earth below it and the air above, at or near the freezing-point till it is all melted. If the quantity is great it may take days or weeks to melt; and if snow continues falling it goes on accumulating all over the surface of a country (which water cannot do), and may thus form such a mass that the warmth of the whole succeeding summer may not be able to melt it. It then produces perpetual snow, such as we find above a certain altitude on all the great mountains of the globe; and when this takes place cold is rendered permanent, no amount of sun-heat warming the air or the earth much above the freezing-point. This is illustrated by the often-quoted fact that, at 80° N. Lat., Captain Scoresby had the pitch melted on one side of his ship by the heat of the sun, while water was freezing on the other side owing to the coldness of the air.
The quantity of heat required to melt ice or snow is very great, as we all know by experience of the long time masses of snow will remain unmelted even in warm weather. We shall however be better able to appreciate the great effect this has upon climate, by a few figures showing what this amount really is. In order to melt one cubic foot of ice, as much heat is required as would heat a cubic foot of water from the freezing point to 176° F., or two cubic feet to 88° F. To melt a layer of ice a foot thick will therefore use up as much heat as would raise a layer of ice-cold water two feet thick to the temperature of 88° F.; and the effect becomes still more easily understood if we estimate it as applied to air, for to melt a layer of ice only 1½ inches thick would require as much heat as would raise a stratum of air 800 feet thick from the freezing point to the tropical heat of 88° F.! We thus obtain a good idea, both of the wonderful power of snow and ice in keeping down temperature, and also of the reason why it requires so long a time to melt away, and is able to go on accumulating to such an extent as to become permanent. These properties would, however, be of no avail if it were liquid, like water; hence it is the state of solidity and almost complete immobility of ice that enables it to produce by its accumulation such extraordinary effects in physical geography and in climate, as we see in the glaciers of Switzerland and the ice-capped interior of Greenland.
High Land and great Moisture Essential to the Initiation of a Glacial Epoch.—Another point of great importance in connection with this subject, is the fact, that this permanent storing up of cold depends entirely on the annual amount of snow-fall in proportion to that of the sun and air-heat, and not on the actual cold of winter, or even on the average cold of the year.[46 - Dr. Croll says this "is one of the most widespread and fundamental errors within the whole range of geological climatology." The temperature of the snow itself is, he says, one of the main factors. (Climate and Cosmology, p. 85.) But surely the temperature of the snow must depend on the temperature of the air through which it falls.] A place may be intensely cold in winter and may have a short arctic summer, yet, if so little snow falls that it is quickly melted by the returning sun, there is nothing to prevent the summer being hot and the earth producing a luxuriant vegetation. As an example of this we have great forests in the extreme north of Asia and America where the winters are colder and the summers shorter than in Greenland in Lat. 62° N., or than in Heard Island and South Georgia, both in Lat. 53° S. in the Southern Ocean, and almost wholly covered with perpetual snow and ice. At the "Jardin" on the Mount Blanc range, above the line of perpetual snow, a thermometer in an exposed situation marked -6° F. as the lowest winter temperature: while in many parts of Siberia mercury freezes during several weeks in winter, showing a temperature below -40° F.; yet here the summers are hot, all the snow disappears, and there is a luxuriant vegetation. Even in the very highest latitudes reached by our last Arctic Expedition there is very little perpetual snow or ice, for Captain Nares tells us that north of Haye's Sound, in Lat. 79° N., the mountains were remarkably free from ice-cap, while extensive tracts of land were free from snow during summer, and covered with a rich vegetation with abundance of bright flowers. The reason of this is evidently the scanty snow-fall, which rendered it sometimes difficult to obtain enough to form shelter-banks around the ships; and this was north of 80° N. Lat., where the sun was absent for 142 days.
Perpetual Snow Nowhere Exists on Lowland Areas.—It is a very remarkable and most suggestive fact, that nowhere in the world at the present time are there any extensive lowlands covered with perpetual snow. The Tundras of Siberia and the barren grounds of N. America are all clothed with some kind of summer vegetation;[47 - In an account of Prof. Nordenskjöld's recent expedition round the northern coast of Asia, given in Nature, November 20th, 1879, we have the following passage, fully supporting the statement in the text. "Along the whole coast, from the White Sea to Behring's Straits, no glacier was seen. During autumn the Siberian coast is nearly free of ice and snow. There are no mountains covered all the year round with snow, although some of them rise to a height of more than 2,000 feet." It must be remembered that the north coast of Eastern Siberia is in the area of supposed greatest winter cold on the globe.] and it is only where there are lofty mountains or plateaus—as in Greenland, Spitzbergen, and Grinnell's Land—that glaciers, accompanied by perpetual snow, cover the country, and descend in places to the level of the sea. In the Antarctic regions there are extensive highlands and lofty mountains, and these are everywhere exposed to the influence of moist sea-air; and it is here, accordingly, that we find the nearest approach to a true ice-cap covering the whole circumference of the Antarctic continent, and forming a girdle of ice-cliffs which almost everywhere descend to the sea. Such Antarctic islands as South Georgia, South Shetland, and Heard Island, are often said to have perpetual snow at sea-level; but they are all very mountainous, and send down glaciers into the sea, and as they are exposed to moist sea-air on every side, the precipitation, almost all of which takes the form of snow even in summer, is of course unusually large.[48 - Dr. Croll objects to this argument on the ground that Greenland and the Antarctic continent are probably lowlands or groups of islands. (Climate and Cosmology, Chap. V.)]
That high land in an area of great precipitation is the necessary condition of glaciation, is well shown by the general state of the two polar areas at the present time. The northern part of the north temperate zone is almost all land, mostly low but with elevated borders; while the polar area is, with the exception of Greenland and a few other considerable islands, almost all water. In the southern hemisphere the temperate zone is almost all water, while the polar area is almost all land, or is at least inclosed by a ring of high and mountainous land. The result is that in the north the polar area is free from any accumulation of permanent ice (except on the highlands of Greenland and Grinnell's Land), while in the south a complete barrier of ice of enormous thickness appears to surround the pole. Dr. Croll shows, from the measured height of numerous Antarctic icebergs (often miles in length) that the ice-sheet from which they are the broken outer fragments must be from a mile to a mile and a half in thickness.[49 - "On the Glacial Epoch," by James Croll. Geol. Mag. July, August, 1874.] As this is the thickness of the outer edge of the ice it must be far thicker inland; and we thus find that the Antarctic continent is at this very time suffering glaciation to quite as great an extent as we have reason to believe occurred in the same latitudes of the northern hemisphere during the last glacial epoch.
The accompanying diagrams show the comparative state of the two polar areas both as regards the distribution of land and sea, and the extent of the ice-sheet and floating icebergs. The much greater quantity of ice at the south pole is undoubtedly due to the presence of a large extent of high land, which acts as a condenser, and an unbroken surrounding ocean, which affords a constant supply of vapour; and the effect is intensified by winter being there in aphelion, and thus several days longer than with us, while the whole southern hemisphere is at that time farther from the sun, and therefore receives less heat.
We see, however, that with less favourable conditions for the production and accumulation of ice, Greenland is glaciated down to Lat. 61°. What, then, would be the effect if the Antarctic continent, instead of being confined almost wholly within the south polar circle, were to extend in one or two great mountainous promontories far into the temperate zone? The comparatively small Heard Island in S. Lat. 53° is even now glaciated down to the sea. What would be its condition were it a northerly extension of a lofty Antarctic continent? We may be quite sure that glaciation would then be far more severe, and that an ice-sheet corresponding to that of Greenland might extend to beyond the parallel of 50° S. Lat. Even this is probably much too low an estimate, for on the west coast of New Zealand in S. Lat. 43° 35′ a glacier even now descends to within 705 feet of the sea-level; and if those islands were the northern extension of an Antarctic continent, we may be pretty sure that they would be nearly in the ice-covered condition of Greenland, although situated in the latitude of Marseilles.
Diagram of the approximate extent of Permanent and Floating Ice around the North and the South Poles. (After Petermann.)
Conditions Determining the Presence or Absence of Perpetual Snow.—It is clear, then, that the vicinity of a sea or ocean to supply moisture, together with high land to serve as a condenser of that moisture into snow, are the prime essentials of a great accumulation of ice; and it is fully in accordance with this view that we find the most undoubted signs of extensive glaciation in the west of Europe and the east of North America, both washed by the Atlantic and both having abundance of high land to condense the moisture which it supplies. Without these conditions cold alone, however great, can produce no glacial epoch. This is strikingly shown by the fact, that in the very coldest portions of the two northern continents—Eastern Siberia and the north-western shores of Hudson's Bay—there is no perennial covering of snow or ice whatever. No less remarkable is the coincidence of the districts of greatest glaciation with those of greatest rainfall at the present time. Looking at a rain-map of the British Isles, we see that the greatest area of excessive rainfall is the Highlands of Scotland, then follows the west of Ireland, Wales, and the north of England; and these were glaciated pretty nearly in proportion to the area of country over which there is an abundant supply of moisture. So in Europe, the Alps and the Scandinavian mountains have excessive rainfall, and have been areas of excessive glaciation, while the Ural and Caucasian mountains, with less rain, never seem to have been proportionally glaciated. In North America the eastern coast has an abundant rainfall, and New England with North-eastern Canada seems to have been the source of much of the glaciation of that continent.[50 - "The general absence of recent marks of glacial action in Eastern Europe is well known; and the series of changes which have been so well traced and described by Prof. Szabó as occurring in those districts seems to leave no room for those periodical extensions of 'ice-caps' with which some authors in this country have amused themselves and their readers. Mr. Campbell, whose ability to recognise the physical evidence of glaciers will scarcely be questioned, finds quite the same absence of the proof of extensive ice-action in North America, westward of the meridian of Chicago." (Prof. J. W. Judd in Geol. Mag. 1876, p. 535.)The same author notes the diminution of marks of ice-action on going eastward in the Alps; and the Altai Mountains far in Central Asia show no signs of having been largely glaciated. West of the Rocky Mountains, however, in the Sierra Nevada and the coast ranges further north, signs of extensive old glaciers again appear; all which phenomena are strikingly in accordance with the theory here advocated, of the absolute dependence of glaciation on abundant rainfall and elevated snow-condensers and accumulators.]
The reason why no accumulation of snow or ice ever takes place on Arctic lowlands is explained by the observations of Lieut. Payer of the Austrian Polar Expedition, who found that during the short Arctic summer of the highest latitudes the ice-fields diminished four feet in thickness under the influence of the sun and wind. To replace this would require a precipitation of snow equivalent to about 45 inches of rain, an amount which rarely occurs in lowlands out of the tropics. In Siberia, within and near the Arctic circle, about six feet of snow covers the country all the winter and spring, and is not sensibly diminished by the powerful sun so long as northerly winds keep the air below the freezing-point and occasional snow-storms occur. But early in June the wind usually changes to southerly, probably the south-western anti-trades overcoming the northern inflow; and under its influence the snow all disappears in a few days and the vegetable kingdom bursts into full luxuriance. This is very important as showing the impotence of mere sun-heat to get rid of a thick mass of snow so long as the air remains cold, while currents of warm air are in the highest degree effective. If, however, they are not of sufficiently high temperature or do not last long enough to melt the snow, they are likely to increase it, from the quantity of moisture they bring with them which will be condensed into snow by coming into contact with the frozen surface. We may therefore expect the transition from perpetual snow to a luxuriant arctic vegetation to be very abrupt, depending as it must on a few degrees more or less in the summer temperature of the air; and this is quite in accordance with the fact of corn ripening by the sides of alpine glaciers.