Оценить:
 Рейтинг: 3.5

Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке

Год написания книги
2016
<< 1 2 3 4 5 6 7 8 9 ... 24 >>
На страницу:
5 из 24
Настройки чтения
Размер шрифта
Высота строк
Поля

Впрочем, некоторый разнобой есть и здесь. Например, последняя аллель записывается в двух вариантах – как записано выше (DYS389-2 = 17), и как сумма DYS389-1 и DYS389-2, то есть 30. На мой взгляд, лучше первый вариант, потому что со вторым часто происходит путаница с подсчетом числа мутаций. Например, если мутация в маркере DYS389-1 изменила величину аллели с 13 до 14, то сразу видно, что там всего одна мутация:

13 24 16 11 11 15 12 12 10 13 11 17

13 24 16 11 11 15 12 12 10 14 11 17

А во втором варианте записи имеем

13 24 16 11 11 15 12 12 10 13 11 30

13 24 16 11 11 15 12 12 10 14 11 31

и для неопытного глаза представляется, что там прошли две мутации.

Далее идут 17-, 19- и 23-маркерные гаплотипы, в которые имеются уже несколько рассогласований – и по порядку маркеров, и по величинам аллелей, но не будем на этом здесь останавливаться.

Далее идут 25-маркерные гаплотипы, в которых к первой 12-маркерной панели добавлена вторая, 13-маркерным панель:

13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15

15 16 16

и 37-маркерные

13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15

16 16–11 11 19 23 15 16 17 21 36 41 12 11

Здесь показан пример записи гаплотипов с разделительными дефисами (или тире) между панелями гаплотипов, чтобы не сбиваться при длинных, монотонных последовательностях чисел. Сейчас работа рутинно ведется с 67-маркерными гаплотипами

13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15

16 16–11 11 19 23 15 16 17 21 36 41 12 11–11 9 17 17 8 11 10 8 10

10 12 22 22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13

и 111-маркерными гаплотипами

13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15

16 16–11 11 19 23 15 16 17 21 36 41 12 11–11 9 17 17 8 11 10 8 10

10 12 22 22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13–31 15

9 15 12 25 27 19 12 12 12 12 10 9 12 11 10 11 12 30 12 14 25 13 9 10

18 15 20 12 24 15 12 15 24 12 23 19 11 15 17 9 11 11

Это все, напоминаю, гаплотип одного и того же человека, автора данной книги, все они – один и тот же «ДНК-генеалогический паспорт», только с разным разрешением, которое, естественно, тем больше, чем более протяженный гаплотип. Но наука на этом не останавливается, и, например, у того же автора определен уже 431-маркерный гаплотип:

13 24 16 11 11 15 12 12 10 13 11 30 16 9 10 11 11 24 14 20 34 15 15 16

16 11 11 19 23 15 16 17 21 36 41 12 11 11 9 17 17 8 11 10 8 10 10 12 22

22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13 31 15 9 15 12 25

27 19 12 12 12 12 10 9 12 11 10 11 12 30 12 14 25 13 9 10 18 15 20 12

24 15 12 15 24 12 23 19 11 15 17 9 11 11 10 12 15 15 10 10 8 8 9 13 7 8

10 10 13 14 14 15 31 32 11 10 9 9 8 24 8 8 8 16 22 22 24 21 23 14 16

25 28 15 15 6 11 14 15 8 14 11 12 10 11 10 10 11 11 18 10 12 10 7 10 5

8 9 5 5 11 15 8 29 6 7 10 13 11 6 7 7 7 16 10 11 16 22 23 11 12 12 10 7

12 12 13 7 3 20 18 11 11 8 9 13 13 10 11 22 12 16 13 14 11 11 12 10 12

9 13 9 12 11 12 16 7 14 12 10 9 10 4 7 7 13 13 12 11 9 11 10 11 14 8 4 8

6 11 11 16 9 11 13 19 12 12 9 10 9 9 11 11 9 9 14 14 15 9 7 10 12 14 13

14 14 12 6 32 10 11 16 8 7 17 17 11 11 6 13 12 13 11 10 7 13 12 7 12 12

7 14 17 17 11 25 8 8 12 8 8 1113 11 12 10 8 13 8 13 14 10 11 9 20 17 15

36 9 13 14 39 33 36 9 10 10 12 18 19 13 9 14 44 10 8 14 9 8 20 11 11

11 11 10 9 9 9 8 8 8 8 9 11 9 23 11 9 16 31 8 20 8 13 12 8 16 10 9 33

27 23 22 10 8 12 10 8 14 8 8 32 55 7 7 5 9 6 11 11 11 13 9 39 33 7 8

27 7 5 13 7 15 28 25 60 42 12 31 22 20 12 3 4

Таких гаплотипов в мире определено пока всего несколько десятков, так что практическая польза от них пока невелика, за исключением нескольких специальных случаев, которые будут пояснены ниже.

В академических публикациях по популяционной генетике, впрочем, пока продолжают использовать гаплотипы от 8- до 17-маркерных, и лишь в крайне редких случаях более протяженные, и это тот случай, когда «любители» далеко обогнали профессионалов. Хотя те «любители» на самом деле зачастую намного квалифицированнее профетоионалов, это просто профессионалы называют тех «любителями», чтобы не признавать свое колоссальное отставание и интеллектуальный застой в популяционной генетике. Этого вопроса мы коснемся ниже, его не обойти при изложении ДНК-генеалогии.

Вопрос 15. После изложения основ ДНК-генеалогии и ее отличий от популяционной генетики, подведите, пожалуйста, итоги по значимости ДНК-генеалогии, о том, как она появилась и какие в этой области Ваши самые значимые публикации.

Итак, речь здесь идет о новой науке, которая только создается, основы которой только закладываются в последние годы. Если точнее, то основы этой новой науки уже созданы, причем стремительно[16 - Klyosov, A.A. (2008) Basic rules of DNA genealogy (Y-chromosome). Mutation rates and their calibration. Proceedings of the Russian Academy of DNA Genealogy, 1, No. 1,3-53; Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method. J. Genetic Genealogy, 5, 186–216; Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. II. Walking the map. J. Genetic Genealogy, 5, 217–256; Klyosov, A.A. (2009) A comment on the paper: Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish Priesthood. Human Genetics, 126, 719–724; Rozhan-skii, I.L., Klyosov, A.A. (2011) Mutation rate constants in DNA genealogy (Y chromosome). Advances in Anthropology, 1, No. 2, 26–34; Клёсов, A.A. (2011) Биологическая химия как основа ДНК-генеалогии и зарождение «молекулярной истории». Биохимия, 76, № 5, 636–653; Klyosov, A.A., Rozhanskii, I.L. (2012) Haplogroup R1a as the Proto Indo-Europeans and the legendary Aryans as witnessed by the DNA of their current descendants. Advances in Anthropology, 2, No. 1, 1-13; Klyosov, A.A. (2012) Ancient history of the Arbins, bearers of haplogroup R1b, from Central Asia to Europe, 16,000 to 1500 years before present. Advances in Anthropology, 2, No. 2, 87-105; Rozhanskii, I.L., Klyosov, A.A. (2012) Haplogroup R1a, its subclades and branches in Europe during the last 9,000 years. Advances in Anthropology, 2, No. 3, 139–156; Klyosov, A.A., Rozhanskii, I.L. (2012) Re-examining the “Out of Africa” theory and the origin of Europeoids (Caucasoids) in light of DNA genealogy. Advances in Anthropology, 2, No. 2, 80–86; Klyosov, A.A., Rozhanskii, I.L., Ryanbchenko, L.E. (2012) Re-examining the Out-of- Africa theory and the origin of Europeoids (Caucasoids). Part 2. SNPs, haplogroups and haplotypes in the Y charomosome of Chimpanzee and Humans. Advances in Anthropology, 2, No. 4, 198–213; Klyosov, A.A., Mironova, E.A. (2013) A DNA genealogy solution to the puzzle of ancient look-alike ceramics across the world. Advances in Anthropology, 3, No. 3, 164–172; Klyosov, A.A., Tomezzoli, G.T. (2013) DNA genealogy and linguistics. Ancient Europe. Advances in Anthropology, 3, No. 2, 101–111; Klyosov, A.A. (2014) Reconsideration of the "Out of Africa" concept as not having enough proof. Advances in Anthropology, 4, No. 1, 18–37; Клёсов, А.А. (2014) Опыт работы с ККК (калькулятором Килина-Клёсова) расчета времен до общих предков ^yRCA), основанный на модели случайных блужданий и с использвоанием 111 индивидуальных констант скоростей мутаций. Часть 1. Вестник Академии ДНК-генеалогии, т. 7, № 4, 626–638; Клёсов, А.А. (2014) Опыт работы с ККК (калькулятором Килина-Клёсова) расчета времен до общих предков ^yRCA), основанный на модели случайных блужданий и с использованием 111 индивидуальных констант скоростей мутаций. Часть 2. Вестник Академии ДНК-генеалогии, т. 7, № 5, 758–769; Klyosov, A.A. (2014) Reconsideration of the «Out of Africa» concept as not having enough proof. Advances in Anthropology, 4, No. 1, 18–37; E. Elha1k, T.V. Tatarinova, A.A. Klyosov, D. Graur (2014) The ‘extremely ancient' chromosome that isn't: a forensic bioinformatic investigation of A1bert Perry's X-degenerate portion of the Y chromosome. European Journal of Human Genetics 22, 1111–1116; S. To-fanelli, L. Taglioli, S. Bertoncini, P. Francalacci, A. Klyosov, L. Pagani (2014) Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration. Frontiers in Genetics, 5, Article 384. doi: 10.3389/fgene.2014.0038410; Klyosov, A.A. A Comment on the Paper: Were the First Europeans Pale or Dark Skinned? Advances in Anthropology, vol. 4, No. 4, 222–226, 2014; Klyosov, A.A. (2014) Clarifying the ‘African Eve' Concept. Rock Art Research, v. 31, No. 2, 146–148; Клёсов, А.А., Тюняев, А.А. Происхождение человека (по данным антропологии, археологии, ДНК-генеалогии), М., Белые Альвы, 2010, 1020 стр.; Клёсов, А.А. (2013) Происхождение славян. М., Алгоритм, 511 с.; Клёсов, А.А. (2013) Занимательная ДНК-генеалогия. М., Вече, 168 с.; Клёсов, А.А., Пензев, К.А. (2014) Арийские народы на просторах Евразии (М, изд. «Книжный мир»), 351 стр.], и идет прогрессивное накопление экспериментального материала. Новый материал поступает потоком, ежедневно в базы данных уходят десятки и сотни новых «экспериментальных точек», которые по принципу обратной связи корректируют методологию новой науки, что приводит к уточнению методов расчета.

Имя этой науки – ДНК-генеалогия. Ее экспериментальные данные – это картина мутаций в нерекомбинантных участках мужской половой хромосомы (на самом деле – и в митохондриальной ДНК, но в этой книге речь пойдет в основном о Y-хромосоме, более информативной для исторических исследований), причем картина мутаций как в Y-хромосомах отдельных людей, так и их групп, популяций. Методология новой науки – перевод динамической картины мутаций в хронологические показатели, во времена жизни общих предков популяций, а на самом деле – общих предков древних родов и племен. То есть фактически производится расчет времен, когда в древности жили эти рода и племена[17 - Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method. J. Genetic Genealogy, 5, 186–216. Rozhanskii I.L., Klyosov A.A. (2011) Mutation Rate Constants in DNA Genealogy (Y Chromosome). Advances in Anthropology, 1, No.2, 26–34.]. Более того, расчеты показывают, как эти времена меняются от территории к территории, что может указывать на направления древних миграций[18 - Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method. J. Genetic Genealogy, 5, 186–216; Klyosov, A.A. (2009) DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. II. Walking the map. J. Genetic Genealogy, 5, 217–256; Klyosov, A.A. (2009) A comment on the paper: Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish Priesthood. Human Genetics, 126, 719–724; Rozhanskii, I.L., Klyosov, A.A. (2011) Mutation rate constants in DNA genealogy (Y chromosome). Advances in Anthropology, 1, No. 2, 26–34; Клёсов, A.A. (2011) Биологическая химия как основа ДНК-генеалогии и зарождение «молекулярной истории». Биохимия, 76, № 5, 636 – 653; Klyosov, A.A., Rozhanskii, I.L. (2012) Haplogroup R1a as the Proto Indo-Europeans and the legendary Aryans as witnessed by the DNA of their current descendants. Advances in Anthropology, 2, No. 1, 1-13; Klyosov, A.A. (2012) Ancient history of the Arbins, bearers of haplogroup R1b, from Central Asia to Europe, 16,000 to 1500 years before present. Advances in Anthropology, 2, No. 2, 87-105; Rozhanskii, I.L., Klyosov, A.A. (2012) Haplogroup R1a, its subclades and branches in Europe during the last 9,000 years. Advances in Anthropology, 2, No. 3, 139–156;].

Мутации, рассматриваемые в ДНК-генеалогии – это или одиночные (как правило) замены нуклеотидов в ДНК, как, например, аденин на цитозин, или цитозин на тимин, или вставки нуклеотидов, или делеции, или мутации более сложные, при которых ошибка копирующего фермента приводит к переносу в Y-хромосоме целого блока нуклеотидов, тандемного, как его порой называют. Это дает или удлинение серии таких блоков на один (редко – сразу на два-три блока), или их укорачивание. Первые мутации – SNP (Single Nucleotide Polymorphism, или в переводе «одиночные нуклеотидные вариации»), или «снипы», обычно очень стабильны, и их для ДНК-генеалогии отбирают только такие, которые случаются только один раз (два раза – максимум) за историю человечества. Поэтому они являются маркерами родов человечества. Примеры будут даны ниже.

Мутации второго типа – STR (Short Tandem Repeats, или «короткие тандемные повторы») – значительно более быстрые, и происходят в определенных участках, или локусах, или маркерах (это все синонимы) Y-хромосомы ДНК раз в несколько десятков или сотен поколений. Набор этих маркеров составляет гаплотип, примеры гаплотипов будут даны ниже. Гаплотип – это по сути цепочка чисел, показывающих число повторов в определенных маркерах.

Естественно, чем длиннее гаплотип, тем выше вероятность того, что в нем произойдет мутация. Мы уже поясняли выше, что мутация в гаплотипах – это результат ошибки в копировании блоков нуклеотидов, тех самых «коротких тандемных повторов», биологической системой копирования ДНК в клетке. Поскольку этих «коротких тандемных повторов» в Y-хросомоме многие тысячи (выше показано 431 таких повторов, и это только среди 10 миллионов нуклеотидов Y-хромосомы, этот размер определяется методологией исследования; всего же в Y-хромосоме примерно 58 миллионов нуклеотидов, или, точнее, нуклеотидных пар, но не будем здесь вдаваться в излишние подробности). Отсюда можно заключить, что таких «тандемных повторов» в Y-хромосоме может быть примерно 2500, и это, видимо, максимально возможный размер гаплотипа. Каждый «тандемный повтор», то есть маркер, мутирует, то есть копирующая система ошибается при копировании протяженных гаплотипов, с вероятностью примерно 0.00178 раз в поколение при протяженнности поколения 25 лет, или раз в 560 поколений, или раз в 14 тысяч лет. Здесь надо сделать два замечания. Во-первых, эта скорость мутации, раз в 14 тысяч лет – средняя величина, рассчитанная по большому числу маркеров. Чем короче гаплотип, тем реальная скорость мутации более отклоняется от средней величины. Во-вторых, величина поколения в 25 лет в ДНК-генеалогии называется условным поколением, она – сугубо математическая величина. Если кому-то больше нравится брать 30 лет за поколение, то вероятность мутации на 30 лет составит примерно 0.00214, или раз в 468 поколений (по 30 лет), или раз в 14 тысяч лет. Как видим, конечный результат получается точно такой же. Более подробно это будет показано ниже.
<< 1 2 3 4 5 6 7 8 9 ... 24 >>
На страницу:
5 из 24