Оценить:
 Рейтинг: 0

Экономика ВИЭ. Издание 2-е, переработанное и дополненное

<< 1 ... 4 5 6 7 8 9 10 11 12 ... 15 >>
На страницу:
8 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля

БИОГАЗ

Ситуация с использованием имеющегося потенциала биогаза в Европе подобна ситуации с биомассой, но в меньшем масштабе, что можно увидеть на Рисунке 13.

Развитие технологии с использованием биогаза значительно зависит от схем стимулирования не только на национальном уровне, но и на уровне регионов и отдельных муниципалитетов, т.к. часто генерация на основе этой технологии – местная, небольшая, являющаяся частью сугубо муниципальной энергетики и теплоснабжения. Эта ситуация стала источником дополнительных трудностей для анализа, и в ней не просто разобраться.

Две страны ЕС-28 с самым высоким уровнем развития использования биогаза в настоящее время – это Германия и Великобритания, и в обоих случаях свалочный газ является доминирующей технологией, стимулируемой при помощи дополнительных схем на муниципальном уровне. Эта ситуация может объяснить отличие от соответствующего развития технологии в Испании: в последнем случае испанское правительство обеспечило в самом начале определённые низкие фиксированные тарифы, не ставшие достаточным стимулом для необходимого технологического развития. А, например, в Польше сейчас нет ни одной свалки, которая не была бы занята под производство свалочного газа, после того, как в стране была принята адекватная система поддержки, все свалки «разобрали». Для многих стран отсутствие детальной информации об опыте поддержки на местном и национальном уровне не позволяет оценить реализуемые стратегии.

Остановимся на биогазе, получаем на свалках, так называемом, свалочном газе. Свалочный газ – конечный продукт микробиологического разложения определённых фракций отходов, захороненных на мусорном полигоне. К ним относятся: растительные и животные остатки, бумага и древесина. Скорости, с которой эти материалы подвергаются биоконверсии, а также выход свалочного газа, существенно различны и зависят, в первую очередь от вида отходов (т.н. «морфологии» отходов), а также от физико-химических условий в теле свалки (влажность, температура, кислотность, доступ воздуха и т.д.). Проблема утилизации свалочного газа стоит достаточно остро, ввиду того, что метан, составляющий от 40 до 70% единицы объёма свалочного газа (остальные составляющие СГ – СО

(порядка 30—60%), H

S, O

, N

 – порядка нескольких процентов), является чрезвычайно сильным парниковым агентом (его парниковый эффект превосходит аналогичный для СО

примерно в 21 раз).

Рисунок 13. Доля биогаза, среднесрочный потенциал и ФТ

(1. В Голландии надбавка составляет 0,016 евро за 1 кВт•ч.

2. В Венгрии реализован механизм фиксированных тарифов с привязкой ко времени использования энергии; поэтому был рассчитан средневзвешенный показатель на основании равномерного графика нагрузки.)

Поэтому западные природоохранные организации субсидируют даже простое факельное сжигание собираемого свалочного газа.

Из-за достаточно высокого содержания метана свалочный газ хорошо горюч (его средняя калорийность составляет примерно 5500 Ккал на м

)[43 - Для справки: калорийность природного газа составляет в среднем 8700—9000 Ккал/м

] и может быть использован в качестве топлива без специальной предварительной обработки как в устройствах прямого сжигания (различные топочные устройства), так и в газопоршневых и газотурбинных двигателях.

Особенностью эксплуатации мусорных полигонов при получении на них свалочного газа является изменение выдаваемых объёмов газа со временем из-за «живого» характера процессов, происходящих в пробуренных скважинах, и соответствующие колебания выработки электроэнергии от этого. Колебания уровня производительности скважин могут происходить на разных временных горизонтах. Есть долгосрочные изменения, связанные с постепенным затуханием процессов выработки метана бактериями, которое наступает приблизительно после 18—20 лет эксплуатации полигона. Есть сезонные колебания выработки метана на скважинах, связанные с влиянием температур и влажности массы полигона. Колебания производительности могут происходить и в течение одного дня, особенно на начальном этапе работ, когда уточнение производительности каждой скважины и особенностей её работы пока не завершено.

СОЛНЕЧНАЯ ЭНЕРГЕТИКА НА ОСНОВЕ ФОТОПРЕОБРАЗОВАНИЯ

Солнечная энергетика на основе фотоэлектрического преобразования (ФЭ, фотовольтаика) является на сегодня самым активно развивающимся сегментом возобновляемой энергетики.

В соответствии с результатами исследования[44 - Рыночный отчет ЭФПА 2012, февраль 2013 (только по странам-участницам ЭФПА), Barom?tre Photovoltaique-Eurobserver-Avril 2013.] в мире в 2012 году было установлено примерно 30 ГВт новых мощностей генерации на основе фотопреобразования, и этот показатель аналогичен показателю 2011 года. Однако уже в 2015 г. годовой объём ввода мощностей генерации на основе ФЭ составил более 57 ГВт[45 - http://about.bnef.com/press-releases/clean-energy-defies-fossil-fuel-price-crash-to-attract-record-329bn-global-investment-in-2015/, на 20.01.2016] и благодаря такому быстрому росту мощностей солнечной генерации суммарной уровень установленной мощности генерации на основе фотоэлектрического преобразования во всем мире к концу 2012 года составил приблизительно 100 ГВт, то по итогам 2015 г. уже более 220 ГВт что равно, примерно, суммарной установленной мощности российской энергосистемы – одной из крупнейших в мире. По объёму новых вводов солнечной генерации в 2015 году лидирующие позиции заняли Китай и Япония, построившие, по предварительным данным, 16,2 ГВт и 12,6 ГВт соответственно. В тройке лидеров также США с 7,3 ГВт новой солнечной генерации.[46 - Там же.]

И такие темпы роста солнечная энергетика на основе фотоэлектрического преобразования показывает уже несколько лет подряд, несмотря на критическое состояние многих традиционных лидеров отрасли – компаний-производителей солнечных элементов и панелей.

Мировыми лидерами по объёмам установленной мощности генерации на основе энергии солнца как источника (ФЭ) являются Германия (38,301 ГВт на конец 2014 г.), Китай (28,199 ГВт), Япония (23,300 ГВт), США (18,280 ГВт), Франция (5,600 ГВт), Италия (18,450 ГВт), Испания (4,787 ГВт),[47 - Photovoltaic Barometer, April 2015, стр. 5: http://www.eurobserv-er.org/pdf/photovoltaic].

За последние 2 года этот список несколько изменился за счёт резкого увеличения объёмов вводов мощностей ФЭ в Китае, США и Японии, которые потеснили традиционных ещё на 2012 г. прежних лидеров отрасли: Италию и Испанию. В производстве солнечных батарей и их элементов лидерами являются Китай, Германия, Япония. Например, Германия в течение 2005—2010 гг. вводила примерно по 650—750 МВт мощностей солнечных станций на фотоэлектричестве ежегодно. Но уже в 2011 г. суммарный ввод в Германии составил почти 7,5 ГВт и только за декабрь 2011 г. немцы ввели 3 ГВт мощности солнечных батарей, а в США – примерно 1,7 ГВт за весь 2011 год.

Рисунок 14. Суммарный объём установленной мощности ФЭ генерации в мире, МВт

Источник: BNEF, http://www.eurobserv-er.org/pdf/photovoltaic; http://www.pv-tech.org/technical-papers

Сохраняющееся лидерство Германии в развитии солнечной энергетики привело к возникновению развитого рынка с соответствующей инфраструктурой, обеспечивающим в стране низкие цены на солнечные панели на крышах и в составе ФЭ станций.

По имеющимся сведениям[48 - S. Lacey. Germany Installed 3 GW of Solar PV in December – The U.S. Installed 1.7 GW in All of 2011.– http://www.renewableenergyworld.com/rea/news/article/2012/01/germany-installed-3-gw-of-solar-pv-in-december-the-u-s-installed-1-7-gw-in-all-of-2011?cmpid=WNL-Friday-January13-2012], если в США ещё в 2011 г. средняя цена установленной мощности солнечных систем на крышах зданий (мощностью до 100 кВт) составляла $5,2 за 1 ватт, то в Германии в том же году – только $2,8. Главной причиной такого разрыва специалисты считают именно степень зрелости немецкого рынка энергетики ФЭ и конечную эффективность фиксированных тарифов как меры поддержки.[49 - Там же.]

Пожалуй, важнейшим фактором ускорения ввода мощностей ФЭ станций в мире стало заметное снижение стоимости основного оборудования солнечных станций – фотоэлектрических панелей и отдельных элементов, из которых панели собирают. Ещё 3—4 года назад цены $2—3 за ватт пиковой мощности считались для солнечных фотоэлектрических панелей большим достижением. Начало 2012 года было отмечено знаменательным событием: впервые были зарегистрированы оптовые цены поставки панелей по ценам ниже $1 (€0,78) за ватт или ниже $1000 (€781,3) за 1 кВт пиковой мощности. Говоря об актуальных ценах на фотоэлектрические панели (Рисунок 15), следует иметь в виду одно, недавно сформировавшееся явление, а именно, продажа небрендированных или даже контрафактных панелей категорий «b» и «с» по демпинговым ценам, немногим выше $0,65 (€0,496) за ватт пиковой мощности. При этом следует иметь в виду, что эффективность таких панелей заметно отличается в худшую сторону. По мнению автора, уровень цен на основное оборудование солнечных станций – солнечные панели, около $1000 (€781,3) за 1 кВт пиковой мощности является новым ценовым ориентиром на ближайшие 1—2 года.

Рисунок 15. Средние цены продажи ФЭ панелей со склада производителя или с первой точки продаж (долл. США за ватт пиковой мощности)

Источник: Mints, P. A Solar Panel Quality Manifesto. http://www.renewableenergyworld.com/rea/news/article/2012/09/a-solar-panel-quality-manifesto?cmpid=WNL-Friday-September7-2012

В результате такого резкого снижения затрат на строительство ФЭ станций сейчас во многих районах мира, в т.ч. в России солнечные энергоустановки на основе фотопреобразования показывают более экономичные результаты, чем установки с использованием дизельного топлива или мазута.

Принято различать несколько технологических направлений в солнечной энергетике: фотовольтаика (включая органическую фотовольтаику), концентраторная (тепловая) солнечная энергетика. Большая часть технологий продолжает развиваться и улучшать эксплуатационные характеристики солнечных панелей (Рисунок 16).

Рисунок 16. Развитие технологий солнечной энергетики в мире

Источник: NREL, Malbranche, Philippe, CEA-INES, Presentation «OVERVIEW OF PV TECHNOLOGIES»

Наибольшее развитие в настоящее время получила фотовольтаика. В основном на базе её технологий сегодня реализуются масштабные проекты строительства солнечных электростанций (на конец 2015 года суммарная установленная мощность построенных в мире солнечных электростанций достигла более 230 ГВт).

Современная фотовольтаика представлена следующими технологиями и материалами:

1. кремниевые:

a. монокристаллические

b. мультикристаллические

c. технология тыльной пассивации PERC

d. технология сомкнутого заднего контакта MWT

e. технологии туннельного перехода

f. другие

2. тонкоплёночные (в том числе гетеропереходные):

a. CIGS (солнечные элементы на основе соединений меди, индия, галлия и селена)

b. на основе теллурида кадмия

c. на основе аморфного и микроморфного кремния

d. на основе арсенида галлия (гетеропереходная концентраторная фотовольтаика)

e. комбинированные гибридные технологии (на основе микроморфных и кристаллических элементов – так называемая HIT-технология)
<< 1 ... 4 5 6 7 8 9 10 11 12 ... 15 >>
На страницу:
8 из 15