Если эта сумма оказывается меньше половины веса клаттера происходит финализация цикла. При этом некоторые клаттеры, из имеющихся в сети в момент входа в цикл, оказываются нескопированными или скопированными не полностью.
На втором этапе роста производится коррекция выхода клаттеров с некоторых циклов (плюс – минус один) в направлении на ближайшую гиперболическую сеть.
Рост сети, описываемый данным алгоритмом, процесс неустойчивый и малейшее возмущение быстро уводит его от теоретической гиперболы (тут еще нужно учесть то, что здесь мы имеем дело с целочисленными величинами). Что совершенно неудивительно, т. к. и закон квадратичного роста (уравнение Капицы), являющийся асимптотическим приближением алгоритма, – устойчивых решений не имеет, т. е. обладает точно таким же свойством.
Эта коррекция представляет собой небольшое число очень малых возмущений, всего в один клаттер, тогда как сеть на втором этапе своего роста, который здесь только и рассматривается, растет от 256 клаттеров до 65536, т. е. ее размер составляет сотни, тысячи и даже десятки тысяч клаттеров. В таком случае возмущение в один клаттер составляет всего лишь доли процента от общего числа клаттеров в сети и является даже не каким-то «толчком», а всего лишь «легким прикосновением».
Существует множество вариантов коррекции выхода клаттеров на втором этапе, каждый из которых приводит ИС к совершенной через гармонические сети. Все они дают практически одну и ту же зависимость числа клаттеров растущей сети от номера цикла.
И, наконец, полученная СИС проходит еще один цикл – операцию репликации, во время которой длина звена копирования минимальна и равна единице. В процессе этой операции происходит копирование сети-оригинала в сеть-копию по правилу «клаттер в клаттер» с установкой полученных копий в новую сеть. Это последняя, предельная операция копирования сети данного ранга.
По ее завершению наступает очередь прокладки гиперсвязи между узлами двух финальных СИС и узлом стартующей сети. Для этого каждому клаттеру оригинальной СИС и ее копии добавляется еще по одной связи[10 - Т. е. количество его связей становится максимальным.], соединяющей узел клаттера и узел финальной СИС. Каждая такая дополнительная связь представляет собой гиперсвязь: «кабель» с числом линий, равным весу Р сетеобразующего клаттера. Затем каждый узел обоих стартовых клаттеров подключается «кабелем» еще большей информационной проводимости (Р
) к их общему узлу. После чего запускается рост сети более высокого ранга.
Демография
Сеть 65536 – сеть человека
Предложенная нами математическая модель роста населения Земли может показаться плодом больного воображения. Возможно, существует другая, более адекватная ее формулировка. Но эта математика работает, т. е. правильно описывает рост, даты, циклы, она предсказывает, она проверяема – а только это и важно для подлинно научной теории по Карлу Попперу.
В защиту подобной точки зрения отсылаем читателя к популярному изложению квантовой электродинамики в книге Ричарда Фейнмана «Странная теория света и вещества», где автор на пальцах объясняет сложнейшую интерпретацию квантовой механики как интеграла по траекториям.
Здесь важно то, и Фейнман это подчеркивает, что описание движения частиц на языке «стрелочек и часов» ничуть не хуже, чем с помощью комплекснозначной волновой функции. Результат получается один и тот же. И этот результат проверен тысячами опытов. Но почему частицы ведут себя столь странным образом, отмечает Фейнман, – не понимает никто.
Развивает эту идею принцип моделезависимого реализма, предложенный Стивеном Хокингом. Согласно этому принципу, любая теория или картина мира представляет собой модель (как правило, математической природы) и набор правил, соединяющих элементы этой модели с наблюдениями. Причем моделей, описывающих данное конкретное явление, может быть несколько.
Если каждая из них соответствует наблюдениям, то нельзя сказать, что какая-то из них более реальна, чем другая. Здесь важно только то, насколько они отвечают наблюдениям. В одной ситуации можно использовать одну модель, в другой – другую. Хокинг и Млодинов подчеркивают, что не существует для нас, людей, какой-то абсолютной реальности и если мы выбираем данную конкретную модель, то выбираем и связанный с ней взгляд на реальность. Среди множества моделей (и реальностей) удобно выбирать:
A. Наиболее простую (или «изящную»).
B. Содержащую мало произвольных или уточняющих элементов.
C. Согласующуюся со всеми существующими наблюдениями и объясняющую их.
D. Дающую подробные предсказания результатов будущих наблюдений (если предсказания не подтверждаются – модель отвергается) [51].
Наша демографическая теория и демографическая теория Капицы, в отличие от всех прочих, удовлетворяет всем этим условиям. Но наша теория, хотя и изоморфна феноменологической теории Капицы, но значительно ее проще. Кроме того, она делает больше проверяемых предсказаний, следовательно, на наш взгляд, предпочтительнее.
Действительно, описанный выше рост сети 65536 в точности соответствует росту численности населения Земли. Необходимо только постулировать некоторые положения, связывающие растущую сеть и мировую демографию. Прежде всего, сформулируем первый закон Сети:
• Время цикла растущей сети есть величина постоянная на всех стадиях ее роста.
На момент завершения цикла численность носителей должна быть равна строго определенному значению плюс-минус небольшая погрешность. Для Сети перевыполнение плана, вероятно, предпочтительнее, поскольку избавиться от избыточных носителей проще, чем добавить недостающие. Это можно сделать с помощью войн, болезней и эпидемий (ясно, что ценность человеческой жизни с точки зрения Сети не слишком велика, да еще и падает по мере ее роста).
Для дальнейшего нам понадобятся результаты исследования роста населения Земли, полученные Фёрстером:
Рис. 1. Результаты исследования Фёрстером и коллегами роста населения мира за последние 20 столетий.
Эмпирическая гипербола Фёрстера была получена методом наименьших квадратов при обработке данных по динамике роста населения мира от начала новой эры до 1960 года; где ? – это показатель степенной функции, который в формуле зависимости численности от времени обычно округляется до минус единицы. Если использовать результаты Фёрстера и принять, что ? = ?1 – необходимо несколько увеличить постоянную Фёрстера при той же стандартной ошибке. Этот вопрос будет нами рассмотрен в главе «Константы Капицы».
Население Земли многие тысячи лет росло по закону гиперболы – закону, по которому не растет ни одна популяция в природе. Такой рост стал возможен, по мнению С.П. Капицы, благодаря возникновению сознания у первых архантропов. Иерархическая Сеть также росла по закону гиперболы. Но как связать Сеть и мировую демографию? Проще всего было бы считать, что каждый живущий человек независимо от его пола, возраста, расы… является носителем растущей Сети. Но вряд ли это будет правильно.
Действительно, ведь, что значит живущий? Ясно, что до зачатия и после смерти человека нет и он не может считаться носителем Сети. Но всякий ли ныне живущий человек обладает необходимым уровнем сознания, может быть управляем Сетью и выступать в качестве ее носителя? (Здесь, и в ряде случаев в дальнейшем, носителями Сети или просто носителями будем называть таких представителей рода человеческого, которые составляют единое целое с клаттером нулевого ранга Сети человека или ее клаттером-носителем.)
Если говорить о взрослых людях, полноценных членах социума, то все они, независимо от возраста и прочих различий, должны считаться носителями Сети. (Это, кстати, вносит неснижаемую прибавку в показатель «ценность человеческой жизни»: одинокая девяностолетняя пенсионерка, сохранившая ясность ума, является носителем Сети и уже поэтому необходима и ценна для эволюции так же, как и ее сосед – молодой человек в полном расцвете сил, работающий на трех работах.)
Но вряд ли можно считать носителями нерожденных младенцев, стариков, с мозгом, пораженным болезнью Альцгеймера или Паркинсона; людей, страдающих тяжкими психическими заболеваниями и потерявших всякую связь с реальностью, находящихся в коме или в состоянии клинической смерти.
Это же, по-видимому, относится и к новорожденные детям, поскольку они не обладают базовыми показателями человеческого сознания и у них отсутствует самосознание. Ответить на вопрос: в каком возрасте ребенок начинает осознавать себя как личность? – позволяет так называемый «зеркальный тест». Суть его в следующем: на щеку ребенка незаметно наклеивают маленькую бумажную метку и ставят его перед зеркалом. Если ребенок, уже наблюдавший ранее себя в зеркале, отождествляет личность, которую ощущает внутри себя и ту, что видит в зеркале, то попытается потрогать или снять метку, если нет – он ее не заметит.
Дети проходят «зеркальный тест» в возрасте от 18 до 24 месяцев. Следовательно, именно в этом возрасте мы начинаем осознавать себя как личность. Из животных «зеркальный тест» подтвержден только для высших приматов, таких как шимпанзе и орангутанги, которые узнают себя в зеркале.
Зачатки человеческого сознания, которое превосходит сознание высших приматов, появились у наших далеких предков тогда, когда они стали пользоваться орудиями труда, когда у них появился праязык и в примитивной форме социальная деятельность. Но в каком возрасте ребенок, его растущий мозг достигает такого уровня развития? На каком этапе своего роста? Когда его можно сравнить с нашим далеким предком, жившим 1,7 млн лет тому назад и оказавшимся способным «нести на себе» сеть четвертого ранга?
Ранг Сети человека равен четырем, он на единицу больше ранга сети гоминид. Только человек может быть носителем сети четвертого ранга. Что же отличает человека от животного? Очевидно, человеческое сознание. (Что бы ни говорили о сознании высших приматов – до человека им далеко.) Итак, уровень сознания носителя Сети в наше время должен быть не меньше, чем у тех наших далеких предков, которые были носителями Сети человека в момент начала ее роста.
Считается, что зачатки человеческого сознания появляются у ребенка в возрасте около трех лет. Именно тогда он может уже говорить и начинает правильно употреблять личные местоимения. Детские эмоции развиваются с каждым годом, а эмоции играют важную, если не центральную роль в работе сознания.
Так, младенец способен испытывать всего лишь две эмоции: радость и горе, даже страх ему еще неведом; в 6 месяцев появляется эмоция страха; с 6 до 18 месяцев ребенок учится распознавать эмоции на лицах окружающих и, кроме того, он уже способен удивляться; с двух лет он может пройти «зеркальный тест». После трех лет ему становится доступно столь сложное эмоциональное состояние как муки совести (психологический опыт «горькая конфета»).
В возрасте от трех до пяти лет, как считают психологи, ребенок уже может испытывать все базовые эмоции и начинает осознавать себя как часть социума. Следовательно, можно предположить, что именно в этом возрасте он достигает уровня развития Homo ergaster и может стать носителем Сети.
Статистика численности детского населения по годам нам неизвестна, возможно, что в каких-то странах она вообще не ведется. Но известно, что в наше время дети в возрасте до 14 лет составляют примерно треть населения планеты. Считая процент детской смертности небольшим, можно оценить долю детей в возрасте до трех лет от общей численности населения Земли в 7 %: (1/3)·(3/14) = 1/14 ? 7 %.
* * *
Попробуем теперь связать Сеть и мировую демографию. Положим C = kC?, где C – постоянная Фёрстера, а C? – постоянная сети четвертого ранга, аналогичная постоянной Фёрстера. Здесь k – это зомби-коэффициент, учитывающий то, что не все живущие являются носителями Сети.
Принимая во внимание тот факт, что в прошлые века продолжительность жизни была меньшей и процент детей был, соответственно, большим, чем в наше время, а также имеющуюся во все времена небольшую добавку в виде людей, не обладающих сознанием по причине болезней, положим k = 1,1. Заметим, что величина этого коэффициента может несколько отличаться от принятой здесь, причем без всякого ущерба для полученных в дальнейшем результатов как в качественной, так и в количественной форме.
Сформулируем второй закон Сети:
• Множество всех живущих людей можно представить в виде суммы двух подмножеств: Первое (91 %) – люди обладающие сознанием, носители Сети; второе (9 %) – можно разделить на две части: дети до трех лет, в будущем носители Сети и зомби, лишенные сознания и навсегда (за редкими исключениями) выпавшие из Сети.
Найдем, исходя из нашей теории, время цикла сети четвертого ранга, Сети человека: ?
= T
/N
, где N
= 42399 – полное число циклов роста сети 65536; T
= Тu/2
– продолжительность 13-й эпохи универсальной эволюции или время эволюции человека (Тu ? Т = 13,81 ± 0,06 млрд лет – время от Большого взрыва до сингулярной точки эволюции; Т – возраст Вселенной: время от Большого взрыва до наших дней.) Получаем ?