Ладно, невесомость оставим научным фантастам. О весе я сказал достаточно, а вот про его вечного противника и союзника – силу реакции опоры – не всё. Эта сила сама по себе мало что значит, но имеет прямое отношение к такой до боли известной вещи, как трение.
Сила трения имеет какое-то сходство с силой реакции опоры. Вообще говоря, трение существует трёх видов. Первое – это когда одно тело скользит по поверхности другого: например, при спуске с горы на санках или при беге на коньках (обычных, которые тоже по льду), оно же трение скольжения. Второе – когда одно тело катится по поверхности другого (любое колесо или шарообразное тело – по земле), оно же трение качения. И третье – трение покоя, когда одно тело (уже неважно, какое именно) находится в таком состоянии, когда оно в принципе может сдвинуться с места, но что-то ему мешает. Это «что-то» и есть трение. То есть, например, если человек стоит на достаточно крутой горке и не двигается, то он не будет падать: мешает сила трения покоя, которая возникает между подошвами ботинок и землёй, не позволяя ногам соскальзывать вниз. Точно так же трение покоя мешает, например, сдвинуть тяжёлый предмет с места: пока сила рук не превысит силу трения покоя шкафа, шкаф не подвинется.
Для всех трений получается одно и то же: сила трения направлена в сторону, противоположную направлению движения (или возможного движения, если это трение покоя), причём направлена вдоль поверхности, по которой тела соприкасаются. В школе, как правило, заморачиваются трением скольжения и трением покоя. Считаются они так:
F = -?.N. Буква мю – это коэффициент трения, он зависит от поверхностей, которые скользят друг по другу. Для льда этот коэффициент всегда меньше, чем для асфальта или грунта, поэтому на льду лучше отталкиваться и хуже тормозить. Минус напоминает, что сила трения направлена против движения: тело снова как будто сопротивляется. Трение качения в школе обычно не считают, оно несколько сложнее остальных. Про него стоит отметить только одно важное наблюдение: трение качения всегда слабее трения скольжения, если брать одни и те же материалы, трущиеся друг о друга. Собственно, поэтому все на колёсах и ездим.
Вкратце и поумнее: вес – это сила, с которой тело давит на опору или подвес. Считается по формуле P = m. (g-a), где P – вес, m – масса давящего тела, g – ускорение свободного падения, a – ускорение, с которым движется опора. При нулевом ускорении вес равен силе тяжести давящего тела, при противоположно направленном a и g возникает перегрузка, при свободном падении опоры с телом (a = g) имеем невесомость. Вес действует на опору, а не на тело, поэтому при решении задач о телах обычно его не рассматривают. Сила реакции опоры действует на тело со стороны опоры и равна минус силе тяжести (-m.g). Сила трения – это сила, возникающая в результате перемещения одного тела по поверхности другого. Различают силы трения скольжения, качения и покоя. Трение скольжения и трение покоя считаются как F = -?.N, где ? (мю) – коэффициент трения, N – сила реакции опоры. Направлена сила трения в сторону, противоположную направлению движения (или возможного движения, если это сила трения покоя).
Космос! Долой динамику!
В общем-то, на этом и приближается к концу вся динамика. Остаётся кусочек, который снова заносит в космос. А именно – космические скорости. Сложно сказать, почему их запихнули в динамику. Может быть потому, что каждая из этих скоростей означает рубеж, при котором преодолеваешь силу чьего-нибудь притяжения. А может быть потому, что космос – это тоже такая инерциальная система отсчёта, где космический корабль бороздит просторы Вселенной в гордом одиночестве, никто ему не мешает, он никуда не поворачивает, не тормозит и так далее.
Так вот, первый «рубеж», при котором такое возможно, – это если вывести корабль на орбиту Земли так, чтобы он стал спутником Земли (то бишь так, чтобы он не летел дальше, а «остановился» где-то недалеко от планеты). В итоге сила притяжения Земли вместе с космической «атмосферой» (которой почти нет – значит, ничего не должно мешать движению) заставят его крутиться вокруг нашей планетки. Соответственно, чтобы какой-то предмет смог так летать вокруг, надо ему дать такую скорость, чтобы он преодолел земное притяжение ровно настолько, чтобы оно же «остановило» его ровнёхонько на орбите планеты. Для особо любопытных: я специально пишу «остановиться» в кавычках: оказавшись на орбите, спутник не останавливается, а продолжает лететь. Но летит он с постоянной скоростью всё время в одну и ту же сторону – и с одной стороны, не может улететь дальше (мешает ещё действующее притяжение Земли), а с другой стороны, не может упасть (скорость достаточно большая, чтобы ещё преодолевать это притяжение). А главная её фишка в том, что для всех предметов она одинаковая! Более того, её даже можно посчитать, используя всего лишь второй закон Ньютона, немного кинематики и собственные мозги.
Чтобы понять, как можно посчитать первую космическую скорость, достаточно представить, как будет выглядеть весь запуск: со страшной скоростью подопытное туловище стартует с поверхности. В полёте гравитация и воздух тщетно пытаются его затормозить. Наконец, на орбите он должен «остановиться». Ничего не напоминает? Правильно – это будет замедленное движение. Чтобы совсем не заморачиваться на тему подсчётов – равнозамедленное. Расстояние, на которое летит туловище: радиус Земли. Ускорение, противостоящее нам: g. Расстояние, пройденное при торможении, будет равно: v
t (как было в кинематике). А нам отсюда нужна скорость. Итого: это будет корень квадратный из произведения g на радиус Земли. Поскольку и то, и другое – числа известные и постоянные, то и скорость будет для всех одинаковая. Если посчитать, то первая космическая скорость получится примерно 7.9 км/с. Вторая космическая скорость – летим ещё дальше, её хватит на то, чтобы вообще преодолеть притяжение Земли и улететь бороздить просторы Солнечной системы. Для Земли она составляет 11.2 км/с. Считается она уже из закона, которым наверняка уже прожужжали все уши, – из закона сохранения энергии. (О нём – ближе к концу механики, сейчас пока не грузимся.) Третья космическая скорость позволяет ухнуть ещё дальше – вылететь вообще за пределы Солнечной системы, то есть преодолеть притяжение Солнца. Она может меняться, потому что космический корабль должен будет уворачиваться от вертящихся планет и тому подобных посторонних предметов, пролетающих мимо в космосе. В среднем она составляет где-то около 42 км/с, но вообще может быть от 16.6 до почти 73 км/с. Наконец, есть ещё четвёртая космическая скорость. Она нужна тогда, когда захочется вышибить наш предмет с Земли настолько сильно, чтобы он преодолел притяжение самой нашей галактики Млечный путь. (Если фантазия разыграется до таких вселенских масштабов…) Её подсчёты ведут уже в какие-то заумные дебри современной физики; говорят, что она непостоянна и зависит от положения тела в галактике. Известно только, что в районе Солнечной системы нужно разогнаться аж до 550 км/с, чтобы иметь хоть какую-то надежду на полный улёт. Улёт в настолько открытый космос, что и представить трудно.
Вкратце и поумнее: космические скорости – это скорости, которые нужно сообщить телу для того, чтобы оно:
1) стало спутником Земли – это 7.9 км/с;
2) преодолело гравитационное притяжение Земли и улетело в пространство Солнечной системы – 11.2 км/с;
3) преодолело гравитационное притяжение Солнца и улетело за пределы Солнечной системы – от 16.6 до 73 км/с, средняя считается около 42 км/с;
4) преодолело гравитационное притяжение галактики «Млечный путь» и улетело чёрт-те куда – приблизительно 550 км/с в районе Солнечной системы.
Статика
Момент равновесия
Наконец, последняя часть из трёх основных составляющих, наименее мучительная. Статика. Которая отвечает на вопрос, при каких условиях тело будет в равновесии. Или в состоянии покоя. Увы и ах, но здесь нельзя использовать всё ту же материальную точку, которая спасала в кинематике и динамике. Потому что наше тело, выходя из равновесия, скорее всего, будет описывать дугу – то бишь вращаться. Грубо говоря, если теряешь равновесие и падаешь, то как бы вращаешься вокруг оси, находящейся прямо под ногами – ну, до тех пор, пока земля не помешает. А материальная точка исключает всякое вращение – как она вокруг себя вращаться-то будет? Нет того, около чего вращаться. Поэтому здесь делают так: просто твёрдое тело каких-то размеров (неважно, каких), его деформациями при внешних воздействиях можно пренебречь. Чтобы не получилось, что оно при малейшем дуновении ветерка разваливается на несколько частей или сплющивается в лепёшку – тогда уже считать будет нечего.
Дальше опять следует куча предположений, которые проще всего себе представить так. Вот у нас есть детские качели, на которых садятся два человека – доска на подставке с двумя сидениями на краях. Подставка намертво закреплена – не отдерёшь, – а к ней прикреплена палка, которая может подниматься-опускаться, как рычаг. Или, по-умному, это получается всё то же вращение. И на сиденьях сидят дети. Ради прикола прикинем, что они идеальные близнецы – полностью одинаковые по массе, силе и т. д. и т. п. Тогда, если всё это перевести в заумные физические понятия, получается так: подставка, она же точка опоры – это ось вращения. Вокруг неё вращается наш «рычаг». Дети – это твёрдые тела. Господа знатоки, внимание, вопрос: так при каких же условиях дети будут находиться в равновесии? За такую формулировку на экзамене по физике могут заколоть заживо. В равновесии должно находиться то, что может вращаться! То есть, в данном случае это наша палка качелей, которая закреплена на подставке. Именно её придётся теребить.
Первое, что идёт прямо из динамики: сумма сил, действующих на тело, должна быть равна нулю. И это действительно так, но это ещё не всё. Здесь есть ещё второе условие, посложнее. Если наших двух одинаковых детей посадить нормально – так, что они будут сидеть каждый на сиденье, – то «палка» действительно будет в равновесии. А если один из них подсядет ближе, качели тут же наклонит в сторону его товарища. Силы-то остались те же! Но поменялись их моменты. Момент силы – это модуль (только значение, без вектора!) силы, умноженный на её плечо (то есть расстояние от оси вращения до линии, по которой действует сила). Притом расстояние выбирается кратчайшее – а как подсказывает заумная геометрия, в таком случае нужно брать длину отрезка, перпендикулярного линии силы. По-русски (и более наглядно) это значит, что надо просто брать длину той части качели, которая идёт от точки опоры до человека. Она всегда будет одна и та же, хоть ты перевернись.
Маленькое замечание к моментам: поскольку крутить он может в две разные стороны – «вверх» и «вниз» (именно в кавычках, потому что строго говоря – это «по часовой стрелке» и «против часовой стрелки»), – то договорились, что момент, крутящий против часовой стрелки, будет больше нуля, а по часовой – меньше. По-чесноку, не знаю, как это лучше запомнить и не перепутать, если только не знать алгебру на уровне синусов-косинусов. (Там тоже углы на единичной окружности отсчитываются таким же образом: против часовой стрелки идёт увеличение (+), по – уменьшение (-).)
Короче говоря, из всех этих страшных слов следует простая вещь: если у тела есть закреплённая ось вращения, и сумма моментов сил, действующих на это тело, равна нулю, то тело будет в равновесии. На этом правиле основана работа весов: если неизвестную массу измеряемого туловища уравновешивают вместе поставленные гирьки, то момент силы тяжести гирек будет равен моменту силы тяжести туловища. Отсюда, поскольку плечи обеих сил равны (а если даже и не равны, то они всё равно известны – хотя так считать было бы гораздо неудобнее), то известны сами силы. А дальше как в ручных весах: сила тяжести гирек равна силе тяжести туловища, откуда при известной массе гирек находим, что масса туловища будет такая же.
Вкратце и поумнее: статика – раздел механики, изучающий условия равновесия взаимодействующих тел (в общем случае). Используется модель твёрдого тела, поскольку при нарушении равновесия оно будет вращаться вокруг некой оси, а материальная точка исключает вращение. Твёрдое тело – модель тела, деформацией которого под действием внешних сил можно пренебречь. Ось вращения – воображаемая прямая, на которой находятся центры всех траекторий точек вращающегося относительно неё твёрдого тела. Плечо силы – расстояние от оси вращения до линии, вдоль которой действует эта сила. Момент силы – произведение модуля силы на её плечо. Единица измерения – ньютон, умноженный на метр. Момент, вращающий тело по часовой стрелке, считается отрицательным, а против часовой стрелки – положительным. Итого условий равновесия твёрдого тела два: тело находится в равновесии, если сумма сил, действующих на это тело, равна нулю, и если сумма моментов сил, действующих на тело относительно произвольно выбранной оси, тоже равна нулю. В том числе отсюда следует правило моментов: тело, имеющее закреплённую ось вращения, будет находиться в равновесии, если сумма моментов сил относительно этой оси будет равна нулю.
Шарики и гора посуды, или Хватит уже этой статики
Кое-как проехали страшную математику статики. Остались только слова. А именно: заумные рассуждения на тему, как лучше держать тело, чтобы оно не упало, и какие вообще могут быть равновесия. Да, у равновесий тоже есть виды, оказывается! Отвлечёмся от качелей и весов, проще всего эти виды равновесия понять так: взять шарик и кинуть его в канаву-кювет U-образной формы. Шарик поболтается туда-сюда, после чего остановится на дне в середине (если смотреть вдоль, по канавке). Попытаешься толкнуть шарик – он снова покатается вправо-влево, но, в конце концов, всё равно вернётся в центр. Это устойчивое равновесие – если вывести шарик из равновесия, он со временем вернётся в него. Считается, что девушки любят парней, находящихся в устойчивом эмоциональном равновесии (то есть если человека «задеть», то он со временем всё равно успокоится и будет, как ни в чём не бывало). Эмоции, конечно, не шарик, расчётам не поддаются. Но суть та же самая – это тоже устойчивое равновесие. Хуже, когда оно неустойчивое: это значит, что невероятными усилиями мы добиваемся равновесия, а потом что-то выводит из него – и всё. Обратно просто так, сам собой, уже не вернёшься. Как таких товарищей называют? Правильно, нытиками. Если не обижать людей и показать на том же шарике – его можно положить, например, на компьютерную мышку (конечно, так, чтоб не двигался). Если его задеть, то он упадёт и, конечно же, обратно не запрыгнет. А вот когда шарик оказался на ровной поверхности стола – он в безразличном равновесии. Тронешь его – он поедет, но потом остановится, как ни в чём не бывало и по-прежнему останется в равновесии. Разница между этими тремя равновесиями – в силе, возникающей при отклонении. Когда равновесие устойчивое, при выведении из него возникает сила, стремящаяся вернуть в положение равновесия (в примере с шариком – сила тяжести). Когда неустойчивое – сила тоже возникает, но она при этом стремится вывести тело из равновесия ещё сильнее (в примере – тоже сила тяжести). Когда безразличное – никакой силы, стремящейся поддержать или подавить равновесие, не возникает. Умники могут возразить: а как же сила трения? Шарик-то трётся о поверхность! На что у меня припрятан туз в рукаве: соль здесь не только в силе, а ещё и в энергии. Об этом – буквально через пару разделов. В двух словах, в чём различие по ней: потенциальная (не пугаться и не смеяться!) энергия тела при выведении из устойчивого равновесия возрастает, при выведении из неустойчивого – уменьшается, а при безразличном – не меняется вообще.
Последнее, о чём разговор здесь, – центр тяжести и центр масс. Если всё хорошо, то эти две точки совпадают и находятся в центре тела – например, центр шара (яблока) или центр параллелепипеда (бруска, какого-нибудь простого бытового предмета вроде губки). Но, вообще говоря, эти две вещи различаются.
Центр масс – это точка, которая как бы является представительством всего тела в целом: если всю массу сосредоточить в этой одной точке, то она будет двигаться ровно так же, как двигается само тело. То есть, если взять центр масс какого-нибудь тела и запихнуть туда всю массу, то получится как раз материальная точка, над которой уже можно законно проводить все расчёты кинематики и динамики. А центр тяжести – это такая точка, в которой просто суммарный момент всех сил тяжести, которые действуют на все места тела, равен нулю. К движению она особо не относится. Разве что если держать тело, грубо говоря, за его центр тяжести, то оно не будет падать – так официант таскает поднос одной рукой, не роняя его. К счастью, в той же статике эти две точки практически всегда совпадают друг с другом, поэтому обычно говорят просто «центр тяжести» и не парятся. Чтобы они не совпадали, нужно, чтобы рассматриваемый предмет находился в неоднородном гравитационном поле (например, если рассматривать его вместе с планетой) – а такими вещами даже физики-шизики заморачиваются достаточно редко.
Вкратце и поумнее: при выведении из устойчивого равновесия возникает сила, стремящаяся вернуть тело в первоначальное положение (равновесия), потенциальная энергия возрастает. При выведении из неустойчивого равновесия возникает сила, стремящаяся ещё сильнее отклонить тело от первоначального положения, потенциальная энергия падает. При выведении из безразличного равновесия никаких «стремящихся» сил не возникает, потенциальная энергия тела неизменна. Центр масс – точка, характеризующая движение тела или системы тел как единого целого. Центр тяжести – точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. На практике оба этих центра практически всегда совпадают, исключение составляют случаи, когда тело находится в неоднородном гравитационном поле.
Законы сохранения
А ты импульсный человек?
Три страшных кита механики позади. Теперь выполняю обещание, которое дал в предыдущем разделе. Но не прямо сразу. Чтобы объяснить, что такое энергия, начну издалека. Конечно же, в ушах уже звенит многострадальное словосочетание «закон сохранения энергии». Но сохраняется не только она! А ещё и импульс. Всего лишь две величины, но про них рассказать придётся достаточно подробно. Потому что и одно, и другое – едва ли не самые важные понятия не только в механике, но и в физике вообще.
Значится, импульс. В жизни это что-то вроде рывка. В физике это скорее способность тела или силы делать рывок, причём это я очень условно. Импульс тела – это произведение массы тела на его скорость. Единица измерения – кг. м/с. Грубо говоря, чем массивнее тело и чем быстрее оно движется, тем большее воздействие оно окажет на то, с чем столкнётся. Самый дубовый пример: первый удар в пуле, разбивка пирамиды шаров. Ударом кия по белому шару мы даём шару импульс. Он передаёт его первому шару, с которым столкнётся, тот покатится в какую-то сторону (в какую именно, можно посчитать), передаст свой импульс шарам на своём пути, те – другим. И так далее до тех пор, пока импульсы не раздадутся всем ударившимся друг о друга шарам, и все не остановятся из-за трения.
В примере выше первый «толчок» пошёл от кия. А кто дал кию импульс? Сила рук игрока, вестимо. У силы тоже есть импульс. Это произведение силы на время, за которое она действует. То есть: можно дать один и тот же импульс, давя слабо, но долго, или сильно, но быстро. В случае удара кием наша сила будет большой, и действовать достаточно короткое время. Импульс силы мерится в тех же величинах (кг. м/с). Интуитивно так и хочется сказать: значит, импульс силы будет равен тому импульсу, который она передаст телу! Да, оно почти так и есть. В учебниках это доказывается математически – во втором законе Ньютона умножаем обе части уравнения на время. Тогда получаем, что изменение импульса тела равно импульсу силы, подействовавшей на это тело. Может, у нас шарик уже двигался, а мы по нему ударили. По здравому смыслу и правилам бильярда это фол, но физики обожают предсказывать едва ли не всё возможное. Если ударить по шарику в движении чётко «навстречу» ему и ухитриться передать такой же импульс, какой был у него, то шарик должен тут же остановиться.
Ну и, наконец, сам закон сохранения импульса, который тоже можно понять по тому же здравому смыслу. Звучит он так: суммарный импульс системы тел постоянен, если сумма внешних сил, действующих на систему, равна нулю. Оговорку про сумму сил специально сделали: если хоть на одного участника подействует какая-нибудь посторонняя сила, то она внесёт свой импульс – и этим испортит всю малину. Собственно, наглядно это видно на тех же бильярдных шариках: если ударить по шару с нужной силой и под правильным углом, он ударится о второй шар, который (при нужном расчёте «на глаз») улетит под углом, который можно рассчитать, и со скоростью, которую можно рассчитать, точно в лузу. Собственно, искусство хорошей игры в бильярд заключается в том числе в том, чтобы прикидывать в голове такую возможность и правильно её использовать.
Последнее, что хотел сказать про импульс. Шарики – это, конечно, круто, но если бы он использовался только в бильярдных расчётах, физики бы быстро махнули на него рукой. А так – импульсы есть чуть ли не у всего, что движется. Начиная от тех же тел живых и неживых и заканчивая какими-то трудно представляемыми мелкими частичками типа электронов, фотонов и тому подобных «он» -ов.
Вкратце и поумнее: импульс тела – величина, равная произведению скорости тела на его массу. Это векторная величина, размерность – кг. м/с. Импульс силы – это произведение силы на время, за которое она действует. Измеряется так же, тоже вектор. Если сформулировать второй закон Ньютона с точки зрения импульса, то он будет гласить: изменение импульса тела равно импульсу силы, подействовавшей на это тело. Закон сохранения импульса: импульс замкнутой системы тел (сумма внешних сил, действующих на систему, равна нулю) постоянен.
Главное – многообещающе произнести это слово
Наконец потихоньку подбираемся к этой непонятной энергии (которую тоже чёрт-те как представишь). Объяснить это замысловатое словечко можно так. Если какое-то тело (или группа тел) может (могут) совершить работу, то говорят, что оно (они) обладает (обладают) энергией. Слово «работа» здесь не просто так. Это в жизни что-то абстрактное, что не волк и в лес не убежит. А в физике это число. Да, работу можно посчитать. Звучит странно, но оно так и есть. Вообще говоря, у работ существует целая куча разновидностей. Но поскольку мы всё ещё в механике, то не буду грузить уймой умных слов, а расскажу только про механическую работу. Тем более, в школьной физике других работ, тьфу-тьфу, на контрольных и прочих работах по механике не дают.
Всё, заканчиваю свои глупые шутки. Механическая работа считается способом, который в математике называется «скалярное произведение векторов». Надо как бы перемножить два вектора, впихнув в произведение косинус угла между ними. Почему такая страшная форма формулы – это спрашивайте у математиков, это они притащили такой способ вычисления. Но, к сожалению, считать придётся именно так, и это будет правильно. Два вектора, которые мы как бы перемножаем, – это вектора силы и перемещения. Понятное дело, стрелочку на стрелочку не умножишь, поэтому считаем «модуль силы умножить на модуль перемещения». А угол идёт типа как компенсация за стрелочки. Потому, что если сила направлена против перемещения, то работа будет отрицательной: угол между силой и перемещением будет 180 градусов, его косинус – -1. Если сила направлена в ту же сторону, что и перемещение, – угол 0, косинус его +1. Если же сила направлена перпендикулярно перемещению, то получается, что она вообще от работы нагло отлынивает: косинус 90 градусов – это ноль, и все модули обращаются в баранку. У остальных углов надо смотреть косинусы и не забывать про знак «минус», если угол получится тупым (от 90 до 180 градусов).
Если посчитать единицу измерения работы, получится Н. м. Но, видимо, так писать не понтово, поэтому решили эту вещь обозвать фамилией ещё одного учёного – Джоуля – и писать Дж. Итого: 1 Дж – это работа, которую совершает сила в 1 ньютон при перемещении тела на 1 метр, при условии, что сила сонаправлена с вектором перемещения. Кошмар, какая мутная формулировка. Попробую по-русски: берёшь килограммовую гирьку (или гантель), прицепляешь к ней безмен (ручные весы). И поднимаешь этот снаряд при помощи весов так, чтобы он отодвинулся ровно на 1 метр от пола, а указатель весов держался на отметке 1 кг (что будет соответствовать твоей силе в 1 Н). Как только поднимешь до конца, ты совершишь работу в 1 Дж. (Вообще говоря, я лукавлю, потому что у безмена тоже есть своя масса – то бишь поднимаешь не 1 кг ровно, а чуть побольше. Но надеюсь, что общую суть передал понятно.)
Со словом «работа» как-то сложно работать. В жизни вместо непонятных «работа» или «энергия» используют другое, родственное, понятие. Мощность. Это скорость изменения работы – A/t (A – работа, t – время, за которое она была совершена). Единица измерения – Дж/с, которую тоже обозвали именем учёного Уатта. Правда, когда обзывали, то было принято говорить Ватт. Так и повелось – Дж/с = Вт. Мощность, к примеру, чайника в 150 Вт означает, что за секунду такой чайник совершит работу в 150 Дж, за минуту – 9000 Дж, за час выйдет 54000 Дж, ну и так далее. Если брать непрерывную работу, конечно (но зачастую так и есть).
Ну, вот и наконец подобрались к самой энергии. Очень скользкое понятие, если попытаться объяснить её в общем случае. У этой энергии видов чуть ли не больше, чем у работы. Поэтому, опять-таки, ограничиваюсь механикой и несколькими словами на тему того, что вне нее. В механике энергия – это мера, характеризующая движение и взаимодействие тел. Она тоже может быть отрицательной. Когда тело совершает работу, его энергия понижается. Когда над телом совершают работу, его энергия повышается. (Хоть что-то очевидное.) То есть, в общем случае: энергия – это какая-то нематериальная штука, имея которую, тело может раздавать люлей в виде работы всем, кто встретится. А если тело не имеет энергии (или она мала по сравнению с энергией остальных), то у него высокий шанс получить люлей от тех, у кого этой энергии больше. Но при этом, получив пенделя, «бедное» тело получит ту энергию, которую ей передали, и со временем сможет дать сдачи. А тот, кто устраивал раздачу, сам окажется под ударом. Но при таких дальнейших расправах над причинившим ему вред злом бывший «бедный» будет энергию терять, передавая её другому… Вот это и есть в совсем-совсем простом и топорном варианте закон сохранения энергии: энергия замкнутой системы тел постоянна.
Но… опять «но». Закон сохранения энергии действует, только если внутри системы тел действуют только так называемые «консервативные силы» – силы, работа которых не зависит от траектории движения тела. Это, например, сила тяжести или сила упругости. А вот сила трения – она не консервативная. И что же делать, если это чёртово трение постоянно мешается под ногами? Очень просто. Энергия по-прежнему будет сохраняться, просто часть её уйдёт как работа силы трения (которая отрицательна).
Чтобы мозги закипели окончательно, расскажу ещё про виды механической энергии. Всего их выделяют две штуки, но вторую ещё можно условно разделить на две части.
Первая – это кинетическая энергия. Ей тело обладает, если просто движется. Можно ли её посчитать? Да, и вот как: E = m.v
/2. E – энергия, m – масса тела, v – его скорость. Как видно, эта энергия не может быть отрицательной – на крайняк ноль, если «туловище» стоит на месте (скорость равна нулю, и вся дробь превращается в дырку от бублика). Меняется эта энергия под воздействием внешних сил, а именно от какой-то работы, ими совершённой. Какой именно – это надо копать, зависит от задачи.
Второй вид, делящийся ещё на два подвида, – потенциальная энергия. Да-да, она образована от того же латинского «potentia», что и то слово, которое засело сейчас в голове. Только означает оно всего-навсего «возможность». Вообще говоря, эта не совсем понятная штука характеризует взаимодействие между телами. А именно: любое тело у поверхности Земли обладает потенциальной энергией из-за собственной силы тяжести. По-русски: притяжение Земли уже само собой означает возможное взаимодействие между телом и поверхностью Земли. Она может быть тоже как положительной, так и отрицательной (в зависимости от того, какой уровень принять за ноль). Часто за ноль считают уровень моря. Тогда тело, просто находящееся над поверхностью, будет иметь потенциальную энергию E = m.g.h, где E – энергия, m – масса тела, g – ускорение свободного падения, h – высота над «нулём». А если её опустить на поверхность Мёртвого моря, которое ниже уровня моря, то это тоже получится m.g.h, только h будет отрицательной. Какое тут может быть взаимодействие? Да хотя бы удар от падения. Печальные случаи с падением обломков, отваливающихся от старых зданий, на прохожих – это тоже проделки в том числе и энергии, в том числе и потенциальной.
Другой подвид, потенциальной энергии немного более безобидный – это потенциальная энергия упруго деформированного тела вроде той же пружины. Если такая деформация подчиняется закону Гука, то энергия такой деформации будет равна k.x
/2. Почти как тот же закон Гука, только икс в квадрате и ещё пополам делить. Буквы все означают то же самое: жёсткость и изменение размера. Самый дубовый пример такой энергии: пуск шарика в пинболе или детском бильярде. Толкатель – пружину – сжимаем усилием руки, он при отпускании толкает шарик – потенциальная энергия толкателя превращается в кинетическую энергию шарика. Она при залетании на верх игрового поля полностью переходит в потенциальную энергию уже шарика. Потом он начинает падать – потенциальная энергия переходит в кинетическую, – и, наконец, при падении кинетическая энергия частично передается той фишке на поле, куда шарик ударился. Короче говоря, потенциальная энергия – это что-то вроде того же импульса в неподвижном состоянии: имея её, то или иное туловище способно надавать люлей в виде энергии всем близлежащим, даже не двигаясь. Почему тогда такое разделение на импульс и энергию, если и одно, и другое можно передать друг другу, и оба сохраняются? У них несколько разное происхождение. Импульс может иметь как тело, так и сила, и он характеризует только движение (когда тело неподвижно, его импульс ВСЕГДА ноль). А энергия имеет более широкий смысл: она может быть и у неподвижного тела, и охватывает не только то, что туловище с энергией может тоже задвинуть кому-нибудь, но и то, что может вообще произойти с тем, кому задвигают. Потому что от избыточной энергии тот, на кого подействовали, может: нагреться, испускать какие-нибудь лучи во все стороны, зарядиться электрически, или вообще начать разрушаться. В общем смысле любая энергия, будь то механическая, тепловая, химическая, электрическая, какая угодно – меряется тоже в джоулях, как работа. Грубо говоря, импульс – больше величина механическая, чем физическая вообще. Энергия же используется во всей физике, в равной степени практически во всех её отраслях.
Один маленький момент, который ещё хочется отметить про потенциальную энергию. Народ приметил принцип, который назвали «минимум потенциальной энергии». Он означает, что любое тело стремится занять такое положение, при котором его потенциальная энергия будет минимальна. Поэтому пружина разжимается. В том числе и поэтому тела падают. Поэтому при устойчивом равновесии тот шарик в канавке возвращался обратно в самую глубокую её точку. Чтобы легче это понять, можно вспомнить лирику типа «природа не терпит возмущений», «природа стремится к равновесию», «со временем всё устаканится», «и это пройдет»… Кому что больше нравится.