Оценить:
 Рейтинг: 0

Нереальная реальность. Вся трилогия в одной книге

Год написания книги
2016
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 25 >>
На страницу:
11 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

Когда эти особенности чёрных дыр стали известны, многие физики были весьма озадачены. Ведь те же самые характеристики свойственны всего лишь ещё одним объектам во Вселенной. Но каким!

Именно этими свойствами – массой, зарядом и спином – отличаются друг от друга элементарные частицы. Подобная схожесть невольно заставляет выдвинуть гипотезу – а не являются ли чёрные дыры сверхмассивными элементарными частицами?

И если это так, то совершенно непонятны физические и философские последствия этого вывода.

Высказывались предположения, что чёрные дыры и элементарные частицы могут быть двумя сторонами одной медали – двумя разными аспектами фазового перехода единой материи.

Примерно аналогичное свойство присуще воде, которая может быть газообразной, жидкой и твёрдой. Стороннему несведущему наблюдателю было бы сложно догадаться, что лёд, жидкость и пар – суть одно и то же в разных фазовых состояниях. Может быть, подобный подход применим и к чёрным дырам?

Во всяком случае, никакого более вразумительного объяснения пока что не придумано.

Следует сказать ещё об одном интересном свойстве чёрной дыры. Дело в том, что её температура обратно пропорциональна массе. Это противоречит нашему повседневному опыту, но это факт.

Мы знаем, что в обычных условиях для нагревания объекта надо обеспечить его энергией. У чёрной дыры всё наоборот. Чем больше она поглощает вещества или энергии – тем сильнее она охлаждается. Кажется, что рано или поздно любая «насытившаяся» чёрная дыра должна стать абсолютно холодной. Но этот вполне логичный вывод оказался ошибочным.

В 1974 году Стивен Хокинг[14 - Хокинг Стивен Уильям – британский физик-теоретик, профессор математики, автор многих открытий в теориях Большого Взрыва и чёрных дыр.] установил, что чёрные дыры не совсем чёрные, а обладают минимальной положительной температурой чуть выше абсолютного нуля. Это было потрясающее открытие с далеко идущими последствиями.

Дело в том, что любое тело, имеющее температуру, обязано излучать. Но это в корне противоречит главному качеству чёрной дыры – ничего от себя не отпускать, включая свет и вообще любое излучение. Как решить возникшее противоречие?

На помощь пришла квантовая физика. Поскольку я ещё буду детально рассказывать об этом передовом разделе современной науки, то в этой главе главное, не разобраться в квантовых законах, а просто уловить суть идей Хокинга.

Суть вот в чём.

Пустое пространство лишь кажется пустым. Вакуум постоянно вибрирует на микроуровне, в пространстве беспрестанно происходят так называемые квантовые флуктуации.

В этом динамичном состоянии постоянно рождаются элементарные частицы, которые являются парными, то есть частицей и античастицей. Время их жизни необычайно мало. Из-за того, что они парные, они почти что моментально взаимно аннигилируют, и мы не замечаем их рождения и смерти в обычных условиях.

Однако, вблизи горизонта событий чёрной дыры, условия, мягко говоря, далеки от обычных. Пара частица-античастица быстро взаимно уничтожается, если поблизости нет внешних полей, способных повлиять на их поведение. Но, рядом с чёрной дырой наблюдается сильнейшее гравитационное поле.

Оно настолько мощное, что успевает как бы выхватить одну из рождённых частиц из объятий аннигиляционной смерти, и затянуть её внутрь чёрной дыры. Вторая частица, соответственно, остаётся без пары.

Но, в отличие от захваченного партнёра, энергия гравитационного поля не втягивает её внутрь чёрной дыры, а, наоборот, отталкивает эту одинокую частицу от горизонта событий. В результате подобного «разлучения пар» со стороны кажется, что чёрная дыра непрерывно испускает излучение, названное излучением Хокинга.

До недавнего времени считалось, что если объект попал в чёрную дыру, то содержащаяся в нём информация навсегда потеряна для внешнего мира. При этом не утрачена для Вселенной в целом, что противоречило бы законам физики. Информация оказывается надёжно спрятанной за горизонтом событий. Казалось бы, что об объектах, попавших в чёрную дыру, можно забыть навечно. Ведь даже фотоны света, как потенциальные переносчики информации, не способны преодолеть её гравитационного притяжения.

Однако, не всё так одназначно.

Обращусь к такой аналогии. Представьте, что у вас есть две одинаковые по размеру фотографии. На одной изображены вы, а на другой, допустим, ваш отец. Если порвать снимки на мелкие кусочки то, на первый взгляд кажется, что перед вами лежит две одинаковых кучки мелко разорванной фотобумаги. Конечно, это не так.

Проявив усердие и терпение, вы сможете восстановить изначальное изображение, как своё, так и вашего отца. А теперь, допустим, что одну из этих фотографий вы выбросили в чёрную дыру.

Поскольку Хокинг установил, что на квантовом уровне чёрные дыры излучают, можно предположить, что всё их вещество, включая остатки фотографии непременно и бесследно испарятся. То есть, в этом случае, никак нельзя установить, кто был изображён на фотоснимке. Возникшая проблема – не философская казуистика. Всё очень серьёзно. Современная физика утверждает, что такого рода информация принципиально восстановима. Получается квантовый информационный парадокс.

Квантовое описание мира по определению точное. Это означает, что утерянная в чёрной дыре информация может быть восстановлена. Поэтому, можно попробовать зайти с другой стороны.

Как и любое другое излучение, излучение Хокинга должно переносить энергию. Следовательно, масса чёрной дыры будет пускай очень медленно, но всё же уменьшаться. Вместе с этим будет сокращаться радиус Шварцшильда.

Я уже упоминал об одном весьма необычном свойстве чёрной дыры – чем она массивнее, тем она холоднее. Соответственно, излучая, то есть становясь легче, она будет всё сильнее нагреваться.

Постоянно расходуя свою массу на рождение пар частиц, в конце концов чёрная дыра неизбежно полностью испарится, превратившись в облако излучения. А это уже что-то. Ведь любое излучение в принципе можно «дешифровать».

Из этого вытекает чрезвычайно значимый вывод: навечно отрезанные от космоса области пространства, могут вновь вернуться в реальный мир. И здесь возникают важнейшие философские вопросы.

Восстанавливается ли информация, ранее попавшая в чёрную дыру, после её квантового испарения? И если да, то в каком виде и на каком условном носителе она пребывала всё это время внутри чёрной дыры?

Каким образом и из чего она извлекается?

И здесь есть одна удивительная возможность.

Известно, что любая трёхмерная область может быть описана с помощью информации, закодированной на двумерной поверхности. Применительно к чёрной дыре – в виде информационной проекции на границе её горизонта событий. То есть там, где действуют квантовые законы.

Это решение проблемы. Если данные сохраняются на границе, они должны каким-то способом сохраняться и в трёхмерной области пространства. Поэтому информация во Вселенной может никогда не теряться.

Как видно, вопросы, связанные с ролью чёрных дыр в истории Вселенной, выходят далеко за рамки физики и астрономии.

На передний план выходят фундаментальные проблемы миропонимания: что происходит с пространством и временем в экстремальных условиях, что объединяет материю с информацией, существует ли граница познания Природы?

Глава 16. Белые дыры

Некоторые теоретические расчёты показывают, что наряду с чёрными дырами во Вселенной могут существовать их антиподы – белые дыры. Из чёрной дыры ничто не может вырваться. В белую дыру ничто не может попасть.

Для всех нас, то есть людей, живущих в причинно-следственном мире, принципиально важно в какую сторону течёт время. Для абстрактной физики это абсолютно безразлично. В какую бы сторону ни была направлена стрела времени, фундаментальные законы природы всегда одинаковы. Это не предположение, а научно установленный факт.

В нашей Вселенной время направлено в будущее. Так сложилось в результате особенностей конфигурации Большого Взрыва. Однако, ничто не препятствовало иному сценарию. Перед Большим Взрывом вероятность была равнозначной. Реализуйся иной вариант, «стрела времени» Вселенной могла быть направлена в прошлое. Эволюция протекала бы в режиме «тому назад».

Нам очень сложно представить себе такой мир. Но это совершенно субъективное и интуитивное неприятие. Мы привыкли думать и действовать вперёд, а не назад.

Физике такой субъективизм не свойственен. Математические формулы успешно работают и со знаком «плюс», и со знаком «минус». Для конкретных уравнений это совершенно не принципиально. Математикам хорошо известна эта особенность любых вычислений.

Так вот, если сохранить все необходимые параметры, связанные с гравитационным коллапсом материи, но направить «стрелу времени» в прошлое, то вместо чёрной получится белая дыра.

Это ещё более трудно понимаемый объект.

Белая дыра способна самостоятельно рождать материю из ничего. Она спонтанно возникает посреди пустоты, взрывается и выбрасывает в космос вещество и излучение.

В процессе эволюции белой дыры вокруг её горизонта событий рождается новое пространство-время. Не правда ли, такое описание подозрительно напоминает Большой Взрыв?

Неудивительно, что некоторые исследователи убеждены, что вся наша Вселенная находится внутри огромной чёрной дыры, которая, в свою очередь, расположена в другой вселенной. Тогда чёрная дыра на входе в одном мире является белой дырой на выходе в другом. А процесс Большого Взрыва на самом деле является формированием чёрной дыры в иной вселенной.

При таком допущении чёрные и белые дыры могут быть связаны между собой пространственно-временными туннелями. Теоретические расчёты показывают, что практически любая чёрная дыра в космосе может быть элементом подобной двойной системы.

Кстати, в этом случае весьма успешно преодолевается информационный парадокс. Законы квантовой физики не нарушаются. Информация никуда не исчезает. Сквозь чёрные и белые дыры она естественным образом «перетекает» из одной вселенной в другую.

Глава 17. Солнечная система

4 миллиарда 567 миллионов лет назад в том месте космоса, где сейчас располагается Земля, произошли исключительно важные для всех нас события.

В этой области пространства сформировалось огромное облако из газа, пыли, микрочастиц льда и минералов. Его размер составлял 24 млрд. километров. Облако было непрозрачным и достаточно плотным. Оно содержало в себе около миллиона атомов в кубическом сантиметре, и было очень холодным, с температурой —260° C.
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 25 >>
На страницу:
11 из 25