Оценить:
 Рейтинг: 0

Нереальная реальность. Вся трилогия в одной книге

Год написания книги
2016
<< 1 ... 5 6 7 8 9 10 11 12 13 ... 25 >>
На страницу:
9 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

Коричневые карлики.

Самые маленькие по массе разновидности звёзд.

Можно даже сказать, что это неудавшиеся звёзды. Они состоят только из водорода. У них нет внутреннего источника собственной энергии в виде термоядерного синтеза из-за низкой температуры. Это очень тусклые объекты, постоянно остывающие на протяжении всей своей жизни.

По своему размеру коричневый карлик всего лишь в десять раз больше Земли.

В галактике содержатся миллиарды коричневых карликов. Сейчас их роль невелика. Но когда Вселенная значительно состарится, именно в коричневых карликах будет содержаться большая часть всего оставшегося вещества.

Ближайшие к Земле коричневые карлики находятся всего в 12 световых годах от нас. Это компоненты кратной звезды ? Индейца.

Белые карлики.

Многие звёзды в конце свой жизни превращаются в белых карликов. Такая судьба ждёт, в частности, наше Солнце.

Белые карлики состоят из вырожденного вещества и не имеют собственного источника термоядерной энергии. В таком состоянии звезда уже не излучает энергию в силу отсутствия топлива. Однако, остывая, продолжает светиться ещё очень значительное время.

Белый карлик, по массе равный Солнцу, имеет радиус примерно, как у Земли. Его светимость в 10 000 раз меньше солнечной.

В конце эволюции нашей Галактики в ней будет содержаться триллион белых карликов.

Квазары.

Это самые яркие объекты во Вселенной, они видны на огромных расстояниях. Поэтому часто квазары называют маяками космоса. С их помощью удобно изучать эволюцию и структуру нашего мира.

Квазары расположены практически на границе видимой части Вселенной. Ближайший к Солнцу квазар 3С273 находится на расстоянии в 2 млрд. световых лет. Самый далёкий из известных, расположен в 28-и млрд. световых лет.

Типичная яркость квазара составляет 10 000 000 000 000 000 000 000 000 000 000 000 000 000 ватт. Это соответствует светимости ста галактик одновременно. Если расположить квазар 3C273 на расстоянии в 33 световых года от Земли, то он будет сиять в небе так же ярко, как Солнце. Его светимость в 100 раз больше светимости всего Млечного Пути, а мощность излучения превышает мощность излучения триллиона солнц.

Квазары горят примерно 100 млн. лет, а потом угасают. Размер типичного квазара примерно равен Солнечной системе. В нём каждую минуту поглощается масса, составляющая шестьсот Земель.

Квазары – очень старые объекты. Они были чрезвычайно распространены в ранней Вселенной. Мы видим их такими, какими они были миллиарды лет назад. На самом деле, в режиме реального времени, все они уже погасли.

Большинство галактик, включая Млечный Путь, изначально родились как квазар, но давно миновали эту активную стадию своей эволюции.

Нейтронные звёзды.

Если сжать звезду до колоссальной плотности, то её вещество примет стабильную, хотя и очень экзотическую структуру. Оно будет находиться исключительно в форме нейтронов. Поэтому нейтронная звезда напоминает атомное ядро огромного размера. Такие сверхплотные объекты порождаются от одной из четырёхсот звёзд Млечного Пути. Их намного меньше, чем звёзд-карликов, но в масштабах Галактики – миллионы.

Типичная нейтронная звезда в полтора раза массивнее Солнца. При этом её радиус составляет всего от 10-и до 30-и километров. Ядро нейтронной звезды столь плотное, что одна ложка её вещества весит 90 млрд. килограмм.

Пульсары.

Это нейтронные звёзды, которые испускают узконаправленные потоки радиоизлучения и вращаются с огромной скоростью. Со стороны кажется будто они пульсируют. Отсюда появилось название таких космических объектов.

Первый открытый пульсар показался астрономам настолько необычным, что была высказана гипотеза об искусственности его периодических импульсов. Поэтому он получил наименование LGM-1 (пер. с англ. – «маленький зеленый человечек» – 1). В настоящий момент природа пульсаров хорошо изучена. Их естественность не вызывает сомнений.

Магнитары.

Сверхплотная нейтронная звезда, обладающая очень сильным магнитным полем, называется магнитар. Продолжительность жизни магнитара незначительна и составляет всего 10 тыс. лет.

Вещество внутри магнитара предельно плотно сжато. Масса подобного объекта больше массы звезды типа Солнца, но его диаметр составляет всего 20 километров.

Магнитар очень быстро вращается, совершая несколько оборотов вокруг своей оси в течение одной секунды. Он сильно излучает в рентгеновском диапазоне.

В крупной галактике типа Млечного Пути содержится несколько миллионов магнитаров.

Сверхновые звёзды.

Термоядерный синтез со временем приводит к образованию внутри звезды большого количества тяжёлых элементов, в первую очередь, железа и никеля. При этом звезда постепенно сжимается, а плотность её центральной области необратимо возрастает. Из-за огромного давления протоны ядер железа начинают поглощать электроны, превращаясь в нейтроны.

При столь огромном давлении электроны начинают буквально вталкиваться в ядра атомов металла. Железное ядро массивной звезды коллапсирует. Температура повышается до нескольких триллионов градусов. Затем следует катастрофическое расширение при ядерной плотности. Происходит чудовищный по силе взрыв.

Взрывная волна настолько мощна, что разрывает наружные оболочки звезды. Вещество распыляется в окружающем пространстве со скоростью до 30 тыс. километров в секунду. Это и есть взрыв сверхновой.

По большому счету, сверхновая – это не звёздный объект, а процесс, последний из возможных этапов эволюции звезды.

Взрыв сверхновой – ярчайшее космическое событие. Современная аппаратура позволяет фиксировать во всей Вселенной около 300 взрывов сверхновых ежегодно. Но, применительно к отдельной галактике, это нечастое явление. Например, в Млечном Пути сверхновая взрывается в среднем один раз в пятьдесят лет. Большинство взрывов происходят в других концах Галактики, и они невидимы для нас.

Лишь несколько раз в истории человечества сверхновые вспыхивали достаточно близко, чтобы их можно было наблюдать невооруженным глазом.

Первое описание содержится в древнекитайских летописях и рассказывает о вспышке, произошедшей 7 декабря 185 года. Тогда звезда взорвалась «всего» в трёх тысячах световых годах от Солнечной системы.

В 1604 году произошла столь яркая вспышка, что в течение трёх недель сверхновую было видно днём.

Взрыв 1054 года привел к образованию красивой Крабовидной туманности.

Последняя видимая невооруженным глазом сверхновая звезда SN1987A вспыхнула в Большом Магеллановом Облаке на расстоянии в 169 тыс. световых лет от Земли в 1987 году.

Яркость взрыва сверхновой на некоторое время превосходит яркость всей галактики, в которой она находится. Его мощность достигает 10 000 000 000 000 000 000 000 000 000 000 000 ватт. Это исключительно красивое зрелище. Но не только.

Вспышки сверхновых звёзд играют важнейшую роль в эволюции Вселенной. При мощнейшем взрыве и огромной температуре синтезируются элементы, в том числе тяжелее железа, которые впоследствии разносятся по всему космосу. Это критически важно для возникновения жизни.

После Большого Взрыва Вселенная было заполнена исключительно лёгкими газообразными элементами типа водорода и гелия. Конечно, в таких условиях не могло образоваться ничего сложного. Газообразная жизнь вряд ли реальна. Твёрдое химическое вещество сформировалось в недрах звёзд, а впоследствии было выброшено в окружающее пространство во время взрывов сверхновых.

Практически все атомы, из которых состоит ваше тело, миллиарды лет назад образовались внутри давно погибших звёзд. Когда позже они взорвались как сверхновые, вещество было разбросано по всей Галактике. Из него образовалось Солнце, Земля и всё, что существует на поверхности планеты, включая нас с вами.

Мы убеждены, что Солнечная система – наш родной космический дом. Но всё намного сложнее.

Можно точно утверждать, что Солнце не является для нас истинно материнской звездой. По-настоящему «родной» для нас была исчезнувшая миллиарды лет назад во вспышке сверхновой безымянная звезда. Именно благодаря ей, окружающая область пространства оказалась насыщена тяжёлыми элементами. И только потом, много позже, в этом месте космоса зародилась наша планетная система. Возможно, когда-нибудь в будущем учёные смогут точно установить тип звезды, которая дала нам жизнь.

Величественно осознание того факта, что и ваше, и моё тело состоят из древних звёздных частиц.

Мы – дети звёзд в прямом, буквальном смысле этого слова.

Глава 14. Сингулярность

Во Вселенной можно наблюдать множество удивительных явлений. Одно из самых загадочных – сингулярность.
<< 1 ... 5 6 7 8 9 10 11 12 13 ... 25 >>
На страницу:
9 из 25