Оценить:
 Рейтинг: 0

Вовлеченные сотрудники. Как создать команду, которая работает с полной отдачей и достигает высоких результатов

Год написания книги
2023
Теги
<< 1 2 3 4
На страницу:
4 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
Некоторые компании задают один вопрос в день: «Как прошел ваш день?», «Как вы себя чувствуете сегодня?». Существуют и адаптивные опросы: если все в порядке, то опрос короткий, если обнаруживаются какие-то проблемы, то задаются дополнительные вопросы.

Преимущества:

– такие опросы позволяют оперативно реагировать на изменения ситуации и настроения людей, показывают сотрудникам, что их слушают, что их мнение важно, позволяют внедрить культуру изменений;

– на их заполнение уходит всего пара минут, и поэтому такие опросы находят больший отклик и сами по себе способствуют вовлечению сотрудников.

Недостатки:

– не позволяют оценить факторы вовлеченности комплексно;

– для их использования компания должна быть действительно гибкой, а руководители – восприимчивыми к обратной связи. Много ли таких вы знаете? Как показывает практика, первые пульс-отчеты вызывают живой интерес у руководителей, но затем их азарт утихает;

– ситуативность и подверженность фактору социальной желательности;

– не позволяют оценить динамику вовлеченности в организации в целом, по подразделениям и факторам;

– слишком частые опросы не дают возможности руководству обдумать ответы и составить план действий. А без конкретных действий они вызывают обратный эффект: сотрудники ощущают безразличие к их мнению, воспринимают компанию как медленную и не готовую меняться.

«Умные» опросы для анализа настроений сотрудников

К сожалению, ежегодные или пульс-опросы не дают столь точных данных, как хотелось бы. Сотрудники часто нечестны в предоставлении обратной связи, а на ответы влияет их настроение. Например, после отлично проведенного корпоративного мероприятия, повышения заработной платы или получения премии результаты вовлеченности будут выше, нежели в другой, менее благоприятный период. Если вы не обеспечили анонимность в сборе данных, то люди могут выдавать социально желательные ответы. Многое также зависит от качества опросника и способа обработки данных.

Беседы руководителей с подчиненными могли бы стать решением этих проблем: из них можно почерпнуть практически всю необходимую информацию и улучшить отношения с сотрудником.

Казалось бы, чего проще? Хотите знать, вовлечены ли ваши сотрудники? Просто спросите их.

На регулярных встречах тет-а-тет руководитель может спрашивать подчиненных о том, что удерживает их в компании, что нравится, а что нет, на что следует сделать акцент, чтобы сохранить и повысить их заинтересованность. Частные беседы дают сотрудникам возможность обсудить наиболее важные для них вопросы, некоторые из которых могут не учитываться при анонимной оценке. Однако сложность в том, что нельзя обобщить и оцифровать результаты таких разговоров. Поэтому обзоры вовлеченности по-прежнему нужны.

Современные технологии на основе искусственного интеллекта позволяют регулярно мониторить настроения персонала пассивно, не предлагая людям отвечать на специальные вопросы или заполнять анкеты. Например, сервисы Keencorp и StatusToday определяют настроения персонала на основе анализа электронной почты компании. Программное обеспечение определяет, является ли настроение сотрудника позитивным, нейтральным или негативным, после чего сводит данные и визуально представляет их руководству.

Сервисы на основе искусственного интеллекта способны собирать информацию из разных источников, обобщая ее. Например, они анализируют информацию из внутренних социальных сетей, ежегодных опросов сотрудников, корпоративных мессенджеров, чатов в Skype или Zoom, веб-сайтов. Анализ тональности сообщений помогает оценивать уровень менеджмента и отношения сотрудников к действующим проектам.

Сервис способен не только оценивать уровень вовлеченности и удовлетворенности персонала, но и выявлять проблемы, связанные с выгоранием и плохим менеджментом. Например, алгоритм определяет, насколько заняты сотрудники в течение дня, кто недогружен, а кто перегружен работой. Сервисы способны не только действовать на опережение, информируя о ситуации лидеров, но и самостоятельно решать некоторые из проблем. Например, сервис Isaak[12 - Ankur Modi. The Future of Work has to be Transparent / The Official Isaak Blog. 2019. https://blog.statustoday.com/the-future-of-work-has-to-be-transparent-be56ec58fc95] может предупредить руководителя, что он отправляет сотрудникам много писем в нерабочее время. Это заставляет их немедленно реагировать, что ведет к переутомлению и выгоранию. Анализируя тон письма, сервис может рекомендовать сотруднику исправить «недружелюбный» текст сообщения перед отправкой.

«Умные» сервисы помогают определять отношения между людьми, командами и отделами, анализируя организационные сети (ONA). Они выявляют неформальных лидеров и аутсайдеров, дают руководителям и HR-специалистам информацию о том, какие люди и команды сотрудничают продуктивно, а кому нужна помощь и поддержка.

Алгоритмы способны предсказывать отток персонала, выявляя сотрудников или команды, планирующие увольнение. Например, платформа Peakon[13 - Workday Peakon Employee Voice / https://www.workday.com/en-us/products/employee-voice/overview.html] имеет алгоритм «прогнозирования увольнения», анализирующий общение сотрудников по ключевым словам, которые обычно используются перед собеседованием. Получив сведения, руководители или HR-менеджеры могут адаптировать свои стратегии удержания и найм, предотвратив тем самым увольнение ценного специалиста или проблему нехватки персонала.

Умные сервисы могут выявлять распространение негативных слухов или разглашение конфиденциальной информации. Такая практика уже существует в продажах и маркетинге. Сервисы сортируют неструктурированные отзывы клиентов на положительные и отрицательные. То же самое они способны делать и относительно оценки бренда работодателя.

Современные технологии анализируют информацию не только пассивно, но и рассылают открытые вопросы сотрудникам. Затем инструменты НЛП просматривают каждый ответ, анализируют настроение слов и предоставляют подробный отчет руководителям и HR-менеджерам.

Преимущества очевидны, но компаниям необходимо заботиться об уровне конфиденциальности сбора таких данных. Если сотрудники будут знать, что любая переписка и комментарии анализируются, будут ли они чувствовать себя в безопасности, будут ли откровенны? Очевидно, что любую технологию можно использовать как во вред, так и на пользу. Многие вспомнят пример, хорошо иллюстрирующий это: основатель компании Xsolla[14 - Маша Цепелева. Xsolla уволила часть сотрудников пермского офиса после «анализа их активности» в рабочих чатах. 2021 / https://vc.ru/hr/277507-xsolla-uvolila-chast-sotrudnikov-permskogo-ofisa-posle-analiza-ih-aktivnosti-v-rabochih-chatah] Александр Агапитов 4 августа 2021 года опубликовал обращение об увольнении невовлеченных и малопродуктивных сотрудников на основании анализа их активности в рабочих чатах, почте, документах. Очевидно, что подобными действиями руководство наносит ущерб вовлеченности сотрудников и бренду работодателя. Поставьте себя на место сотрудников. Насколько комфортно им теперь будет работать в компании? Как действия руководства отразились на уровне их доверия к нему?

Поэтому в работе с опросами так важна конфиденциальность сбора и анализа данных, а также то, как руководство использует полученную информацию и работает с ней.

Вопрос конфиденциальности данных беспокоит не только пользователей, но и разработчиков таких сервисов. Например, сервис KeenCorp[15 - KeenCorp Workforce Analytics / https://keencorp.com/] не «собирает и не хранит в отчетах» информацию об отдельных сотрудниках. Вся информация, позволяющая идентифицировать личность, удаляется.

Машинный анализ текста все еще находится на стадии разработки. Пока нет уверенности в том, что он не регистрирует ложноположительные показания и улавливает все потенциальные угрозы. Но очевидно, что разработчики найдут решения и будут расширять области применения мониторинга настроений персонала, например, начнут анализировать не только письменную, но и устную речь и выражения лиц.

В настоящий момент пассивный анализ мнений лучше всего работает в сочетании с данными из других источников, таких как ежегодные опросы персонала, пульс-опросы, личные беседы руководителей, фокус-группы и анализ косвенных показателей.

Анализ косвенных показателей[16 - Егорова Анна. Как определить целевой показатель текучести? / URL: https://zen.yandex.ru/media/id/5caae1cbcdb8db00af5329f9/kak-opredelit-celevoi-pokazatel-tekuchesti-5eb37c75edf71008373a7119Егорова Анна. Норматив текучести персонала / URL: https://groupbr.ru/blog/normativ-tekuchesti-personala/]

Коэффициент текучести кадров. Вовлеченные сотрудники хотят работать в компании долго, а невовлеченные уходят к конкурентам, поэтому коэффициент текучести – логичная метрика для определения вовлеченности команд. Подразделения или категории персонала, в которых текучесть высокая, как правило, имеют низкую вовлеченность. Однако стремиться к нулевому значению текучести не имеет смысла. Она полезна: в компанию приходят новые люди со свежим взглядом на проблемы.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4
На страницу:
4 из 4