Оценить:
 Рейтинг: 0

Выбор катастроф

Год написания книги
1979
<< 1 ... 11 12 13 14 15 16 17 18 19 ... 43 >>
На страницу:
15 из 43
Настройки чтения
Размер шрифта
Высота строк
Поля

Конечно, могла бы помочь не теоретическая осведомленность о том, что происходит внутри Солнца, а результаты прямого наблюдения. Это может показаться несбыточной мечтой, но на самом деле это не совсем так.

В первые десятилетия двадцатого века стало ясно, что когда расщепляются радиоактивные ядра, они, как правило, излучают электроны. Эти электроны обладают широким диапазоном энергий, которые почти никогда в сумме не доходят до общего количества энергии, потерянной ядром. Это, казалось, противоречит закону сохранения энергии.

В 1931 году австрийский физик Вольфганг Паули (1900—1958) предположил, что наряду с электроном излучается еще и другая частица, и именно она содержит недостающую энергию. В этом случае устраняется противоречие закону сохранения энергии и некоторым другим законам сохранения. Для объяснения всех обстоятельств дела эта вторая частица не должна нести никакого электрического заряда и, вероятно, не должна обладать массой. Без массы и заряда ее было чрезвычайно трудно обнаружить. Итальянский физик Энрико Ферми (1901—1954) назвал ее «нейтрино», по-итальянски «маленькая нейтральная».

Нейтрино, допуская, что они обладают свойствами, которыми наделены по идее, должны с трудом реагировать с веществом. Они должны проходить сквозь всю Землю почти так же легко, как они проходили бы сквозь такой же толщины слой вакуума. Собственно, они должны без особых проблем проходить сквозь миллиарды Земель, поставленных рядом друг с другом. Тем не менее в течение продолжительного периода времени при условии, что взаимодействие с веществом было бы возможно в принципе, нейтрино могло бы столкнуться с частицей вещества. Если поработать со многими триллионами нейтрино, проходящими сквозь маленькое материальное тело, то несколько взаимодействий могли бы иметь место, и они могли бы быть зафиксированы.

В 1953 году два американских физика, Клайд Л. Кован (р. 1919) и Фредерик Рейнес (р. 1918), работали с антинейтрино, полученными на реакторах, расщепляющих уран. Антинейтрино проходили сквозь большие емкости с водой, и предсказанные взаимодействия действительно имели место. После двадцати двух лет теоретического существования антинейтрино, а следовательно, и нейтрино тоже, их существование было доказано экспериментально.

Они такие же, как и нейтрино, но противоположны им по определенным свойствам. Собственно говоря, именно антинейтрино, а не нейтрино испускается наряду с электроном, когда расщепляются определенные ядра.

'Астрономические теории относительно синтеза ядер водорода в ядра гелия в недрах Солнца – источника солнечной энергии – предполагают, что нейтрино (не антинейтрино) испускаются в больших количествах, которые достигают 3 процентов общей радиации. Остальные 97 процентов состоят из фотонов, которые являются единицами лучистой энергии, вроде света и рентгеновских лучей.

Фотоны прокладывают себе путь к поверхности и в конечном счете излучаются в космос, но это требует много времени, поскольку фотоны легко взаимодействуют с веществом. Фотон, который возникает в недрах Солнца, очень быстро поглощается, снова испускается, опять поглощается и так далее. Может потребоваться миллион лет для того, чтобы фотон проложил себе путь из недр Солнца к его поверхности, и это при том, что между возникновением и поглощением он движется со скоростью света. Когда фотон достигает поверхности, у него такая сложная история поглощений и испусканий, что по его природе невозможно установить, что происходило в недрах.

Совсем иное дело нейтрино. Они тоже движутся со скоростью света, поскольку не имеют массы. Однако из-за того, что они редко взаимодействуют с веществом, нейтрино, возникшие в глубинах Солнца, проходят без задержек через солнечное вещество, достигая поверхности в 2-3 секунды (и теряя в процессе поглощения только 1 из 100 миллиардов). Затем они пересекают вакуум космоса и через 500 секунд достигают Земли, если были нацелены в этом направлении.

Если бы мы могли зафиксировать эти нейтрино здесь, на Земле, мы бы имели некоторую непосредственную информацию о событиях в глубине Солнца, произошедших восемь минут назад. Трудность состоит в обнаружении нейтрино. Эту задачу взялся разрешить американский физик Реймонд Дэвис-младший, который воспользовался тем фактом, что нейтрино иногда будет взаимодействовать с атомами хлора, производя радиоактивный атом аргона. Аргон может быть обнаружен и отделен, даже если образуется всего несколько атомов (На такую возможность впервые указал советский физик Бруно Максимович Понтекорво (р. 1913).).

Дэвис воспользовался для этой цели огромной емкостью, содержащей 378 000 литров тетрахлорэтилена, обычной чистящей жидкости, которая была богата атомами хлора. Он поместил емкость в глубокую золоторудную шахту Хоумстейк в Лиде, штат Южная Дакота, так, что между емкостью и поверхностью было 1,5 километра скалы. Эта скала поглотила бы любые частицы, поступающие из космоса, кроме нейтрино.

Оставалось только ждать, когда образуются атомы аргона. Если принятые теории о событиях, происходящих в недрах Солнца, верны, то каждую секунду должно образовываться определенное количество нейтрино, определенный процент из них должен достичь Земли, определенный процент из достигших Земли должен пройти через емкость с чистящей жидкостью, и среди последних определенный процент должен взаимодействовать с атомами хлора и образовать определенное число атомов аргона. По колебаниям в скорости, с которой образовывались атомы аргона, по другим свойствам и вариациям взаимодействия в целом, могли быть сделаны выводы о событиях, происходящих в недрах Солнца.

Однако почти сразу Дэвису пришлось удивиться. Было обнаружено очень мало нейтрино, гораздо меньше, чем ожидалось. Из тех атомов аргона, что должны были образоваться, образовалась только шестая часть.

Ясно, что астрономические теории относительно происходящего в недрах Солнца, по-видимому, требуют пересмотра. Мы знаем не так много о происходящем внутри Солнца, как мы считаем. Означает ли это, что близится катастрофа?

Этого сказать мы не можем. Что касается наших наблюдений, то по всем признакам Солнце достаточно стабильно в течение всей истории жизни, что делает жизнь на планете непрерывно возможной. У нас была теория, которая объясняет стабильность. Теперь нам, возможно, придется видоизменить теорию, но и видоизмененной теории все же придется объяснять стабильность. Солнце не станет вдруг нестабильным из-за того, что мы пересмотрим нашу теорию.

Подведем итог: катастрофа второго класса, включая изменения в Солнце, которые сделают жизнь на Земле невозможной, должна наступить не позднее чем через 7 миллиардов лет, но она задолго предупредит о себе.

Катастрофы второго класса могут неожиданно произойти и до этого, но вероятность их так мала, что нет смысла тратить время на волнения по этому поводу.

Часть третья

Катастрофы третьего класса

7. Бомбардировка Земли

Внеземные объекты

При обсуждении вторжения в Солнечную систему объектов из межзвездного пространства я концентрировал внимание на возможности воздействия таких объектов на Солнце, поскольку любое грубое вмешательство в целостность Солнца или изменение его свойств связано с наличием катастрофического эффекта для нас.

Сама Земля еще более чувствительна к подобным злоключениям, чем Солнце. Межзвездный объект, пересекающий Солнечную систему, может быть слишком мал, чтобы значительно воздействовать на Солнце, исключая прямое столкновение, а иногда даже в этом случае. Однако если такой объект окажется по соседству с Землей или столкнется с ней, он может вызвать катастрофу.

И теперь надо рассмотреть катастрофы третьего класса, то есть те возможные события, которые повлияют в первую очередь на Землю и сделают ее необитаемой, хотя Вселенная и даже остальная часть Солнечной системы останутся нетронутыми.

Рассмотрим, например, случай вторжения мини-черной дыры сравнительно большого размера, скажем, с массой, сопоставимой с массой Земли. Подобный объект, если он минует Солнце, не причинит ему никакого вреда, хотя сам, вероятно, под влиянием гравитационного поля Солнца радикально изменит орбиту (Он может даже (хотя это невероятно) быть захвачен Солнцем и выйти на постоянную орбиту вокруг него. Эта орбита, вероятно, будет крайне склонна к эклиптике и крайне эксцентрична. К счастью, он ощутимо не беспокоил бы другие тела Солнечной системы, включая Землю, хотя стал бы и оставался наиболее неудобным соседом. Тем не менее очень маловероятно, что крупная мини-черная дыра является членом Солнечной системы. Даже незначительное воздействие ее гравитационного поля было бы замечено, кроме случая, когда она находилась бы далеко за орбитой Плутона.

Если бы подобный объект проскользнул мимо Земли, он бы, тем не менее, мог произвести бедственные действия только за счет влияния на нас его гравитационного поля.

Поскольку сила гравитационного поля зависит от расстояния, та сторона Земли, которая обращена в сторону вторгнувшегося тела, будет притягиваться сильнее, чем противоположная. Земля до некоторой степени вытянется в сторону вторженца. В особенности вытянутся податливые воды океана. Океан будет горбиться на противоположных сторонах Земли в направлении вторгнувшегося объекта и прочь от него, и при вращении Земли континенты будут проходить сквозь эти горбы. Дважды в день море будет выходить на континентальные берега, а потом снова отступать.

Наступление и отступление моря (приливы и отливы) практически происходят на Земле в результате гравитационного влияния Луны и в меньшей степени Солнца. Поэтому все эффекты, вызываемые различием гравитационного влияния на тело, называются «приливо-отливными» эффектами.

Чем больше масса вторгнувшегося тела и чем ближе оно к Земле, тем сильнее приливо-отливные эффекты. Если вторгшаяся мини-черная дыра будет достаточно массивна и пройдет мимо Земли достаточно близко, она может вмешаться в целостность планетарной структуры, вызвать трещины в ее коре и так далее. Прямое столкновение было бы, разумеется, катастрофическим.

Вероятность существования такого большого размера мини-черной дыры чрезвычайно мала, тем не менее, если бы она даже существовала, следует помнить о том, что Земля – гораздо меньшая цель, чем Солнце. Поперечное сечение Земли составляет только двенадцать тысячных поперечного сечения Солнца, так что даже самая малая вероятность близкой встречи между таким объектом и Солнцем должна быть соответственно уменьшена для вероятности его близкой встречи с Землей.

Мини-черные дыры, если они существуют, вероятнее всего, были бы астероидного размера. Мини-черная дыра с массой, скажем, в одну миллионную массы Земли, не представит серьезной опасности при близкой встрече. Она вызовет незначительные приливо-отливные эффекты, и мы вполне можем не заметить подобного события, если оно произойдет.

Иное дело при прямом попадании. Мини-черная дыра, какой бы малой она ни была, «проест» себе туннель в теле Земли. Она, конечно, будет поглощать материю, и энергия, выделяемая в процессе, будет плавить и испарять вещество перед ней по пути ее продвижения. Она пройдет толщу Земли по кривой (не обязательно через центр) и выйдет из Земли, чтобы продолжить в космосе свою, уже измененную гравитационной силой Земли траекторию. На выходе она станет более массивной, чем была на входе. И двигаться она будет медленнее, поскольку при прохождении сквозь газы испаряющегося вещества Земли она встретится с определенным сопротивлением.

Тело Земли вылечит себя после прохода сквозь него мини-черной дыры. Пары охладятся и затвердеют, внутреннее давление закроет туннель. Эффект на поверхности будет все же опустошительным (впрочем, возможно, и не вполне катастрофическим), примерно таким, как от огромного взрыва, собственно, даже двух: одного – в месте, где мини-черная дыра вошла в Землю, другого – там, где она вышла.

Естественно, чем меньше мини-черная дыра, тем меньше и эффекты. Но в одном отношении маленькая дыра может быть хуже, чем большая. У маленькой мини-черной дыры и момент силы довольно мал благодаря малой массе. И если к тому же дыра будет двигаться с низкой скоростью по отношению к Земле, то замедление в процессе «проедания» может оказаться достаточным для того, чтобы она не смогла проделать себе путь на выход. Гравитация Земли окажется для нее ловушкой. Дыра станет падать в направлении к центру, промахнется, снова станет падать, снова промахнется и так далее, снова и снова.

Из-за вращения Земли дыра не будет ходить туда и сюда по одному и тому же пути, но будет выписывать кривые, по рисунку и общей сложности напоминающие пчелиные соты, неуклонно вырастая, как это ей присуще, на каждом отрезке. В конечном счете она обоснуется в центре, оставив вокруг себя изрешеченную Землю с опустошенным центром. И эта центральная дыра продолжит медленно расти. Земля таким образом будет так ослаблена в структурном отношении, что погибнет; вся материя направится в центральную черную дыру, и в конце концов вся планета будет поглощена.

Итоговая черная дыра с массой Земли продолжит движение по земной орбите вокруг Солнца. Для Солнца и других планет такое превращение не составит никакой гравитационной разницы. Даже Луна продолжит кружить вокруг крошечного объекта в 2 сантиметра в поперечнике, как если бы это была Земля в своей полной величине, каковой она в отношении массы и останется.

Для нас это был бы конец света – катастрофа третьего класса. И (теоретически) она может произойти хоть завтра.

Так же и кусок антиматерии, слишком малый для того, чтобы существенно повлиять на Солнце, даже если произойдет прямое столкновение, может быть достаточно большим, чтобы вызвать значительное опустошение на Земле. В отличие от черной дыры антиматерия, если кусок ее по массе с астероид или меньше, не пробьет туннеля сквозь планету. Тем не менее он выбьет такой кратер, который, в зависимости от размера тела, может поглотить целый город или континент. Глыбы обычного вещества из межзвездного пространства, разнообразие которых нам знакомо, естественно, причинят гораздо меньше вреда.

От этих катастроф вторжения Земля защищена двумя обстоятельствами:

1. Что касается мини-черных дыр и антиматерии, мы на самом деле не знаем точно, существуют ли вообще такого вида объекты.

2. Если эти объекты действительно существуют, то космос настолько велик по объему, а Земля представляет собой такую маленькую мишень, что нужно какое-то чрезвычайное стечение обстоятельств, чтобы попасть в Землю или хотя бы подойти к ней близко. Это, конечно, верно также и для объектов, состоящих из обычной материи.

Значит, мы можем исключить вторженцев из межзвездного пространства, внушительного размера вторженцев, как не представляющих ощутимой опасности для Земли (Говоря «внушительного размера», я намеренно опускаю возможность столкновения с Землей частиц пыли из межзвездного пространства или отдельных атомов, или субатомных частиц. Я рассмотрю это позднее).

Кометы

Чтобы найти ракеты, которые могут попасть в Землю, нет надобности искать вторженцев из межзвездного пространства. В самой Солнечной системе существуют подходящие для этого объекты.

Приблизительно с 1800 года, благодаря работам французского астронома Пьера Симона Лапласа (1749—1827), хорошо известно, что Солнечная система является стабильной структурой при условии, что она предоставлена самой себе. (И она была, насколько мы знаем, предоставлена самой себе на протяжении 5 миллиардов лет и будет предоставлена самой себе, насколько мы можем судить, еще в течение неопределенно длительного времени.) Например, Земля не может упасть на Солнце. Для того чтобы это произошло, ей надо избавиться от своего огромного запаса углового момента кругового вращения. Этот запас не может быть уничтожен, он может быть только передан, а мы не знаем способа внезапного вторжения из межзвездного пространства тела размером с нашу планету, которое могло бы поглотить угловой момент Земли, оставив Землю неподвижной и, следовательно, способной упасть на Солнце.

По этой же причине никакая другая планета не может упасть на Солнце, и никакой спутник не может упасть на свою планету, и, в частности, Луна не может упасть на Землю. И планеты не могут настолько изменить свои орбиты, что столкнутся друг с другом (Правда, русский по происхождению психиатр Иммануил Великовский в своей книге «Столкновение миров» (Worlds in Collision), опубликованной в 1952 году, постулирует ситуацию, в которой планета Венера была извергнута из Юпитера около 1500 года до н. э. и затем несколько раз столкнулась с Землей, прежде чем водворилась на свою нынешнюю орбиту. Великовский описывает бедственные события, сопровождавшие эти столкновения, которые, тем не менее, по-видимому, не оставили следа на Земле, если не считать неясных мифов и сказок, выборочно цитируемых Ве-ликовским. Идеи Великовского с уверенностью могут быть отвергнуты как фантазии активного воображения, обращенные к людям, которые знакомы с астрономией не более, чем сам Великовский.).

Солнечная система, конечно, не всегда была в таком порядке, как сейчас. Когда формировались планеты, облако пыли и газа в окрестностях растущего Солнца конденсировалось во фрагменты различных размеров. Более крупные фрагменты росли за счет более мелких, пока не сформировались большие объекты планетарных размеров. Однако остались более мелкие фрагменты, все же значительных размеров. Некоторые из них стали спутниками, вращающимися вокруг планет по траекториям, которые стали стабильными орбитами. Другие столкнулись с планетами или спутниками и добавили к ним свои кусочки массы.

Мы можем видеть следы финальных столкновений, например, с помощью хорошего бинокля. На Луне существует 30 000 кратеров размером от 1 километра в поперечнике до 200 с лишним. Каждый – след столкновения с ускоренным куском материи.

Исследовательские ракеты показали нам поверхности других миров, мы обнаружили кратеры на Марсе и на обоих его маленьких спутниках – Фобосе и Деймосе, а также на Меркурии. Поверхность Венеры скрыта облаками, ее трудно исследовать, но, несомненно, там тоже есть кратеры. Существуют кратеры даже на Ганимеде и Каллисто – двух спутниках Юпитера. Почему же тогда нет кратеров от бомбардировки на Земле?

О, они существуют! Или, правильнее, существовали. Земля обладает свойствами, которых нет у других миров. Она имеет активную атмосферу, которой нет у Луны, Меркурия и спутников Юпитера и которой лишь в очень малой степени обладает Марс. У Земли есть объемистый океан, не говоря обо льде, дождях и текучей воде, а этого и в помине нет ни на каком другом объекте; впрочем, есть лед и, может быть, когда-то была и текучая вода на Марсе. И, наконец, на Земле есть жизнь, нечто, по всей видимости, уникальное в Солнечной системе. Ветер, вода и жизнедеятельность – все это способствует эрозии поверхности, и, поскольку кратеры образовались миллиарды лет назад, они стерты теперь с лица Земли (На недавних фотографиях Ио, самого крупного из наиболее близких к Юпитеру спутников, видно, что там нет кратеров. В данном случае причина в том, что Ио – спутник активно-вулканический и кратеры заполнены лавой и пеплом).
<< 1 ... 11 12 13 14 15 16 17 18 19 ... 43 >>
На страницу:
15 из 43