Оценить:
 Рейтинг: 0

Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха

Год написания книги
2022
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
С момента основания Renaissance ее флагманский инвестиционный фонд Medallion[10 - Gregory Zuckerman, The Man Who Solved the Market (New York: Penguin, 2019).], который в своей торговой стратегии опирается исключительно на закономерности в данных, всегда приносил 66 % прибыли до вычета налогов и сборов. В тот же период S&P 500 приносил 10 % до вычета. Экономист Кеннет Френч (его имя связывают с гипотезой эффективного рынка, говорящей о практической невозможности обеспечить показатели существенно выше S&P 500) так объясняет успех Renaissance: «Видимо, они просто лучше всех остальных»[11 - Amy Whyte, “Famed Medallion fund ‘stretches… explanation to the limit,’ professor claims”, Institutional Investor, January 26, 2020, https://www.institutionalinvestor.com/article/b1k2fymby99nj0/Famed-Medallion-Fund-Stretches-Explanation-to-the-Limit-Professor-Claims.].

Но как нам принимать важные решения, касающиеся личной жизни? Как выбрать партнера для брака, как ходить на свидания, как проводить время, соглашаться ли на то или иное предложение о работе?

На кого мы больше похожи – на Oakland Athletics в 2002 году или на прочие бейсбольные команды в то же время? На Google или на привычный магазин? На Renaissance Technologies или на обычного управляющего инвестиционным фондом?

Я бы сказал, что большинство из нас принимают важнейшие решения, опираясь на интуицию. Может быть, мы посоветуемся с кем-то из друзей, родственников или самозваных гуру по части искусства жить. Может быть, прочитаем какие-то ни на чем не основанные советы. Бросим беглый взгляд на самую базовую статистику. И затем просто сделаем то, что кажется нам правильным.

«Что бы произошло, начни мы решать самые важные жизненные вопросы с опорой на данные?» – спрашивал я себя, смотря бейсбольный матч по телевизору. Если бы мы администрировали свою жизнь так же, как Билли Бин – клуб Oakland Athletics?

Я знаю, что в наши дни подобный подход становится все более осуществимым. В своей предыдущей книге «Все лгут» я показывал, как новые данные, которые стали доступны нам благодаря Интернету, меняют наши представления об обществе и работе человеческого ума. Может быть, статистическая революция началась с бейсбола именно из-за статистической информации, которую собирали и на которую создавали спрос сумасшедшие болельщики. Так сказать, «революция Moneyball для нашей жизни» стала возможной благодаря данным, которые собрали наши компьютеры и смартфоны.

Давайте зададимся не таким уж тривиальным вопросом: что делает людей счастливыми?

Данные, необходимые для строгого и систематического ответа на этот вопрос, в XX веке были недоступны.

Когда революция Moneyball потрясла мир бейсбола, в распоряжении сайберметристов были аккуратнейшим образом зарегистрированные данные по каждой игре и им было что анализировать. Но аналитики данных тогда не располагали подобными сведениями относительно существенных жизненных решений и настроений обычных людей. В те времена счастье, в отличие от бейсбола, не поддавалось строгому анализу.

Но теперь такая возможность есть.

Блестящие специалисты из Google, Джордж Маккеррон и Сюзанна Мурато, при помощи аппаратов iPhone сформировали не имеющий аналогов массив данных о счастье и назвали свой проект Mappiness[12 - Дополнительную информацию о проекте Mappiness можно найти по адресу http://www.mappiness.org.uk.]. Они привлекли к работе десятки тысяч пользователей, которых опрашивали по нескольку раз в течение дня. Им задавали простые вопросы: что они делают в данный момент, с кем они, насколько при этом счастливы. Таким образом они получили массив данных более чем из трех миллионов «замеров счастья». Это нельзя даже сравнивать с десятками измерений, на которые опирались исследования счастья в прошлом.

Некоторые из скрытых в этих миллионах точек результатов наводят на размышления. Например, болельщики получают больше страданий от проигрыша своей команды, чем радости от ее победы. Иногда они противоречат нашим интуитивным представлениям: так, употребление алкоголя во время исполнения рутинных обязанностей в среднем доставляет больше удовольствия, чем во время общения с друзьями. Иногда результаты представляются здравыми: работа имеет тенденцию раздражать – если только мы не работаем вместе с друзьями.

Но полезны эти результаты всегда. Вы никогда не задавались вопросом, как в точности погода влияет на настроение? Какие занятия в среднем чаще всего обманывают нас в смысле ожидаемого удовольствия? Насколько деньги действительно важны для счастья? В какой мере настроение зависит от среды? Благодаря Маккеррону и Мурато у нас теперь есть достоверные ответы на эти вопросы – и они будут предметом восьмой и девятой глав. Я даже завершу эту книгу надежной формулой счастья, выведенной из замеров на тысячах смартфонов. Я называю ее «ответом на главный вопрос жизни, полученным при помощи данных».

Итак, последние четыре года я, вдохновившись примером бейсбола, погрузился в напряженную научную работу. Я говорил со специалистами. Читал академические публикации. Рассматривал приложения к публикациям под таким углом, который – я совершенно уверен в этом – еще не приходил в голову ни одному ученому. Провел несколько собственных исследований и интерпретировал их результаты. Свою задачу я видел в том, чтобы найти своих Биллов Джеймсов в таких областях, как брак, воспитание детей, спортивные достижения, финансовое благосостояние, удача, стиль и счастье, – и дать каждому из вас возможность стать Билли Бином своей жизни. Я готов поделиться всем, что узнал.

Называйте это «Moneyball вашей собственной жизни».

Передвижения в игровом поле жизни

Прежде чем приступить к работе, я задал себе несколько вопросов. Как могла бы выглядеть жизнь, в основу которой положены принципы Moneyball? Как мог бы выглядеть наш процесс принятия решений, если бы мы, подобно Oakland Athletics и Tampa Bay Rays, следовали данным, а не инстинктам? Одно из бросающихся в глаза свойств бейсбола после Moneyball заключается в том, что некоторые решения опирающихся на аналитику команд выглядят… скажем так, немного странными. Вот вам пример – расположение инфилдеров[13 - Игрок защищающейся стороны, находящийся на игровом поле. – Прим. пер.].

В эпоху после Moneyball бейсбольные команды все активнее смещают положение полевых игроков. Они группируют многих своих защитников в одной и той же части поля, оставляя его обширные участки совершенно незащищенными, куда бьющему игроку ничего не стоит направить мяч. Такое смещение игроков на игровом поле кажется болельщикам традиционного бейсбола чистым безумием. Но от безумия оно предельно далеко. Подобное смещение оправдывается огромными массивами данных, предсказывающими, куда именно конкретный игрок, скорее всего, пошлет мяч[14 - Rob Arthur and Ben Lindbergh, “Yes, the infield shift works. Probably”, June 30, 2016, https://fivethirtyeight.com/features/yes-the-infield-shift-works-probably/.]. Числа говорят бейсбольным командам, что такая тактика верна, пусть и кажется неверной на первый взгляд.

Если мы применим подход Moneyball к нашей жизни, то можем ожидать, что некоторые кажущиеся странными решения – назовем их жизненными смещениями на игровом поле – на самом деле оправданны.

Мы уже говорили о поиске пары. Побриться наголо или покрасить волосы в синий цвет, чтобы тебя чаще приглашали на свидания, – это аналоги передвижения на игровом поле, только в качестве поля выступает сама жизнь. А вот еще один аналог, только найденный в больших данных по продажам.

Предположим, вы пытаетесь что-нибудь продать. Этот опыт все больше становится повсеместным. Как пишет Дэниел Пинк в книге To Sell Is Human, «неважно, выступаем ли перед коллегами, пытаемся ли убедить тех, от кого зависит финансирование, или развлекаем детей… мы все сейчас занимаемся продажами»[15 - Daniel H. Pink, To Sell is Human (New York: Penguin, 2012).].

В любом случае, что бы вы ни пытались продать, вы вкладываете в это дело всю свою душу.

Вы пишете текст своего выступления (это хорошо!). Репетируете его (хорошо!). Ночью как следует высыпаетесь (хорошо!). Съедаете основательный завтрак (хорошо!). Справляетесь с нервами и начинаете говорить (хорошо!).

И вот, произнося речь, которая призвана продать ваш товар, вы вспоминаете, что нужно передать аудитории свою уверенность в нем широкой белозубой улыбкой (а вот это, как ни странно… не хорошо).

В недавно проведенном исследовании сопоставляются проявление эмоций агентами по продажам и результаты их работы.

Массив данных – 99 451 выступление на розничной платформе с живым потоковым видео. (Сейчас люди все чаще приобретают товары и услуги на платформах типа Amazon Live, позволяющих продавцам рекламировать свой товар при помощи видео.) Исследовали получали видео каждого такого рекламного выступления и данные о последовавших продажах. (Они также располагали информацией о продаваемом товаре, его цене и наличии бесплатной доставки.)

Методы – искусственный интеллект и глубокое обучение. Исследователи преобразовали 62,32 миллиона видеокадров в цифровые данные. В частности, искусственный интеллект оказался способен закодировать эмоции, выражаемые продавцом в видео. Выглядел ли он раздраженным? Испытывающим отвращение? Испуганным? Удивленным? Грустным? Или довольным?

Результат: исследователи обнаружили, что эмоции продавца – важнейший фактор для предсказания количества проданного товара. Неудивительно, что, когда продавец выражал отрицательные эмоции, такие как раздражение или отвращение, он продавал меньше. Злость продается плохо. А вот что как раз удивительно, так это то, что, когда он показывал положительные эмоции, такие как довольство или удивление, он тоже продавал меньше! Радость тоже продается плохо. Если речь заходит об увеличении продаж, сдерживание эмоций продавцом – иными словами, когда на лице у него покерфейс вместо широкой улыбки, – сказывается на результатах продаж примерно вдвое лучше, чем бесплатная доставка[16 - Neeraj Bharadwaj et al., “EXPRESS: A New Livestream Retail Analytics Framework to Assess the Sales Impact of Emotional Displays”, Journal of Marketing, September 30, 2021.].

Иногда, чтобы продать товар, не стоит слишком демонстрировать энтузиазм на его счет. Может быть, это кажется странным – но данные говорят, что дело обстоит именно так.

От «Все лгут» к «Не лги себе»

Дальше последует краткая пауза, на протяжении которой я попытаюсь оправдать свою вторую книгу в глазах читателей первой, «Все лгут»[17 - «Все лгут. Поисковики, Big Data и Интернет знают о вас все». Москва: Бомбора, 2022.]. Некоторые из вас, возможно, обратили внимание на эту книгу, поскольку вам понравилась та. Если же вас к этой книге привели другие причины, может, следующие абзацы убедят вас купить и первую. Я постараюсь.

Книга «Все лгут» была посвящена моему исследованию того, как при помощи поисковых запросов Google определить действительные мысли и поступки людей. Я назвал Google «цифровой сывороткой правды», потому что люди честны с поисковой машиной.

Кроме того, я назвал поисковые запросы Google самым важным набором данных о внутреннем мире человека.

Я показал, что:

• Расистские запросы Google предсказывали, где именно Барак Обама покажет слабые результаты на выборах 2008 и 2012 годов.

• Люди часто печатают в поисковой строке Google полные предложения – например, «Я ненавижу своего начальника», «Я пьян» или «Мне нравятся сиськи моей подружки».

• Самый популярный запрос Google, начинающийся со слов «мой муж хочет…», в Индии выглядит как «мой муж хочет, чтобы я кормила его грудью». Вообще в Индии запросов, посвященных кормлению мужа грудью, почти столько же, сколько посвященных грудному вскармливанию младенцев.

• Запросы Google о том, как сделать аборт самостоятельно, почти идеально концентрируются в тех частях Соединенных Штатов, где легально сделать аборт сложно.

• Мужчины чаще ищут, как увеличить собственный член, чем как настроить гитару, сменить колесо или приготовить омлет. Один из самых популярных запросов к Google на тему члена звучит: «Насколько большой у меня член?»

В конце предыдущей книги я предположил, что следующая будет называться «Все лгут (по-прежнему)» и что в ней я буду продолжать разбираться, что мы можем узнать из запросов Google. Кажется, я солгал насчет этого, прошу прощения. Чего еще ожидать от автора книги под названием «Все лгут»?

На первый взгляд моя вторая книга сильно отличается от первой. И если вы надеялись на продолжение анализа того, какие запросы делают мужчины относительно своих детородных органов, вы будете горько разочарованы. Впрочем, ладно. Один пример я приведу. Вы не знали, что мужчины часто набирают в поисковой строке полные предложения, сообщающие длину их пениса?[18 - Данные о длине члена, которую мужчины сами сообщают Google, можно найти здесь: https://clck.ru/34BU6P.] Они печатают, например: «Длина моего члена – 5 дюймов»[19 - 12,7 см. – Прим. ред.]. И если сопоставить данные по всем подобным запросам, мы получим близкое к нормальному распределение длины пениса, сообщаемой Google его владельцем, с пиком около 5 дюймов.

Но давайте оставим мои исследования и вернемся в сумасшедший мир поисковых запросов Google, о котором можно прочесть больше в моей книге «Все лгут».

Большинство научных работ, о которых говорится в этой книге, в отличие от «Все лгут», написаны не мной, а другими людьми. Книга носит более практический характер, больше сосредоточена на самосовершенствовании, чем на погружении в различные аспекты современной жизни. Кроме того, в ней заметно меньше внимания уделяется сексу. Говоря о нем, мы не будем сосредотачиваться на человеческих тайных желаниях и страхах – им уделено достаточно места в предыдущей книге. Обсуждение секса в этой книге сводится к вопросу, делает ли он людей счастливее (спойлер: да).

И тем не менее я уверен, что эта книга служит естественным продолжением предыдущей – по двум причинам.

Во-первых, одним из главных побудительных мотивов к ее написанию для меня стали данные о том, чего на самом деле хотят читатели, а не о том, что они говорят, будто хотят. Закончив работу над «Все лгут», я, как любой приличный маркетолог, задал читателям вопрос, что заинтересовало их больше всего. Большинство ответили мне, что их сильнее всего заинтересовали главы, посвященные важнейшим проблемам нашего мира и путям их решения – например, те, которые касаются преступлений в отношении детей и проблем неравенства.

Но как автор «Все лгут» я отнесся к словам людей скептически и захотел посмотреть на какие-нибудь другие данные – может быть, на «цифровую сыворотку правды». И я стал выяснять, какие места чаще всего подчеркивают в цифровой версии книги для Kindle. Я заметил, что люди часто подчеркивают отрывки, где говорится, как они могли бы улучшить собственную жизнь, и редко – о том, как улучшить мир. Людей интересует самопомощь – независимо от того, готовы ли они в этом признаться.

Более тщательно исследовав данные Kindle, я пришел к этому же выводу. Обработав большой массив книг, исследователи определили, что вероятность обнаружить слово «вы» в подчеркнутых предложениях в двадцать раз выше, чем в неподчеркнутых. Людям, таким образом, действительно нравятся предложения со словом «вы»[20 - Ariana Orwell, Ethan Kross, and Susan A. Gelman, “‘You’ speaks to me: Effects of generic-you in creating resonance between people and ideas”, PNAS 117(49) (2020): 31038–45.].

Именно поэтому первый абзац книги «Не лги себе» построен так, а не иначе:

«Вам вполне по силам улучшить качество решений, касающихся вашей жизни. Большие данные могут вам в этом помочь».

Данные, а не интуиция, определили содержание этого абзаца. Он открывает для вас книгу, которая призвана помочь вам получить от жизни больше тех вещей, которые именно вы хотите. Он вам понравился?

<< 1 2 3 4 >>
На страницу:
2 из 4