Оценить:
 Рейтинг: 0

Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха

Год написания книги
2022
Теги
1 2 3 4 >>
На страницу:
1 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха
Cет Cтивенс-Давидовиц

Библиотека ИТ. Главные книги о современных технологиях
За последнее десятилетие ученые изучили гигантские наборы данных, чтобы найти новые подходы к решению самых важных жизненных вопросов. Исследователь данных Сет Стивенс-Давидовиц проанализировал множество научных исследований об удовольствии и счастье, чтобы понять, чего мы хотим от жизни на самом деле.

В формате PDF A4 сохранен издательский макет книги.

Сет Стивенс-Давидовиц

Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха

Джулии

Если данные говорят, что любить тебя неправильно, я не хочу правильного.

Don’t Trust Your Gut: Using Data to Get What You Really Want in Life

Seth Stephens-Davidowitz

© 2022 by Seth Stephens-Davidowitz

© Вантух К. А., перевод на русский язык, 2023

© Оформление. ООО «Издательство «Эксмо», 2023

Введение

Учебник самопомощи для верящих в данные

Вам вполне по силам улучшить качество решений, касающихся вашей жизни. Большие данные могут вам в этом помочь.

На наших глазах радикально, хотя и незаметно на первый взгляд, меняются наши представления о самых важных областях человеческой жизни. Причиной тому служат Интернет и данные, которые он сгенерировал. В последние годы ученые проводили исследование различных, но всегда огромных массивов данных – от сообщений OkCupid до биографических статей на Wikipedia и статуса отношений в социальных сетях. В этих миллиардах записей они смогли найти – вероятно, впервые – достоверные ответы на основные жизненные вопросы. В частности, на такие:

• По каким признакам можно определить хорошего родителя?

• Кто богат, а мы не догадываемся об этом? И почему?

• Каковы шансы стать знаменитостью?

• Почему некоторые люди необычайно удачливы?

• По каким признакам можно предсказать счастливый брак?

• Если посмотреть на вопрос шире, что вообще делает людей счастливыми?

Часто ответы, найденные при помощи данных, не соответствуют нашим интуитивным догадкам и требуют не тех решений, которые мы приняли бы. Дело обстоит просто: из этих гор данных можно сделать выводы, которые дают возможность вам – или кому-нибудь из ваших знакомых – улучшить качество своих решений.

Вот три примера, взятых из исследовательских работ, касающихся далеких друг от друга областей жизни.

Пример № 1: предположим, вы холостяк или незамужняя женщина и личная жизнь у вас обстоит хуже, чем хотелось бы. Вы пытаетесь улучшить себя всеми способами, которые вам советуют окружающие. Одеваетесь лучше. Отбеливаете зубы. Делаете новую дорогую стрижку. Все впустую. Женихи (или невесты) не толпятся под вашей дверью.

Здесь могут оказаться полезными выводы из больших данных.

Математик и литератор Кристиан Раддер исследовал миллионы случаев выбора на OkCupid в поисках свойств, обеспечивающих наибольший успех у противоположного пола[1 - Christian Rudder, Dataclysm: Who We Are (When We Think No One’s Looking) (New York: Broadway Books, 2014). – Здесь и далее прим. авт., если не указано иное.]. Он обнаружил – и это совсем не удивительно, – что популярнее всего оказываются красавцы и красавицы, живущие среди нас Брэды Питты и Натали Портман.

Но в этих горах данных он обнаружил и другой тип людей, показавший неожиданно высокую популярность: обладателей экстремальной внешности. Представьте себе, например, синие волосы, боди-арт, безумные очки или бритый череп.

В чем же дело? Ключ к успеху обладателей необычной внешности лежит в том, что, хотя многим она не слишком нравится, всегда есть группа людей, которых она привлекает очень. А в вопросах отношений с противоположным полом это решает все.

Здесь, если ваша внешность отличается от кинематографического идеала красоты, лучшей стратегией будет, по словам Раддера, набрать «много “да”, много “нет”, но как можно меньше “э…”». Подобная тактика, как открыл Раддер, способна увеличить число сообщений на 70 %. Создайте крайний вариант себя, говорят нам данные, и найдутся люди, для которых вы будете в высшей степени желанны.

Пример № 2: предположим, у вас только что родился ребенок (кстати, мазаль тов[2 - «Мазаль тов» – фраза на иврите, которая используется для поздравления в честь какого-либо события в жизни человека. – Прим. пер.]). Нужно выбрать район, где вы собираетесь его растить. Вы советуетесь с несколькими друзьями, выясняете у Google некоторые основные факты – и, собственно, все. Вы счастливый обладатель дома для своей семьи. Не бином Ньютона, правда?

В действительности сегодня дело обстоит ровно наоборот.

Ученые воспользовались недавно оцифрованными данными налоговой службы, чтобы исследовать жизненные траектории сотен миллионов американцев. Они обнаружили, что возможность вырасти в определенном городе – более того, в определенном квартале этого города – резко повышает шансы в жизни. Причем эти кварталы могут оказаться вовсе не теми, которые люди считают наиболее престижными. И не теми, жилье в которых стоит дороже всего. Сейчас существуют карты, созданные на основе тщательного анализа данных, которые показывают родителям перспективность любого квартала в Соединенных Штатах.

И это не все. Ученые внимательнейшим образом просеяли данные в поисках свойств, общих для всех перспективных районов. По ходу работы они откинули значительную часть житейской мудрости, касающейся воспитания детей. Благодаря большим данным мы наконец можем просветить родителей насчет того, что действительно имеет значение для успеха ребенка (намек: пример взрослых), а что имеет гораздо меньший вес (намек: лучшие школы).

И пример № 3: предположим, вы начинающий художник, которому никак не удается поймать удачу за хвост. Вы покупаете все книги по технике живописи, какие можете. Вы просите оценок и советов у друзей. Вы переделываете свои работы снова, снова и снова. И при этом все кажется бесполезным. Вы не можете понять, что делаете не так.

Большие данные указали на вероятную ошибку.

Недавнее исследование карьеры тысяч художников под руководством Сэмюэла П. Фрайбергера[3 - Samuel P. Fraiberger et al., “Quantifying reputation and success in art”, Science 362(6416) (2018): 825–29.] открыло прежде остававшуюся незамеченной закономерность, почему некоторые из них добиваются успеха, а некоторые нет. Итак, в чем же секрет отличия великих имен?

Часто он заключается в том, как выставлять свои работы. Данные говорят нам, что художники, не добившиеся ничего серьезного, имеют тенденцию выставлять свои работы все время в одних и тех же немногочисленных галереях. Те же, кто сделал большую карьеру, как правило, выставляются в гораздо большем числе точек, увеличивая тем самым вероятность встречи со своим шансом.

О важности демонстрации себя ради хорошей карьеры говорили многие. Но ученые, занятые исследованием данных, показали, что важно демонстрировать себя много где.

Я вовсе не хочу сказать, что эта книга будет источником советов исключительно для одиноких, молодых родителей и начинающих художников (хотя полезные указания для каждой из этих групп в ней еще будут). Моя задача – подчеркнуть выводы из больших массивов данных, которые были бы полезны именно для вас, независимо от того, на каком этапе жизни вы находитесь. Ниже последуют недавно разработанные указания, как быть счастливее, выглядеть лучше, продвинуться в карьере – и многое другое. А идея книги пришла ко мне как-то вечером, когда я… смотрел бейсбольный матч.

Moneyball для вашей собственной жизни

И я, и другие любители бейсбола не могли не заметить, что он стал совсем не той игрой, что тридцать лет назад. Когда я был мальчишкой и болел за New York Mets, бейсбольные команды выбирали тактику, опираясь на собственное понимание игры и интуицию. Они решали, сделать ли им бант или украсть базу, в зависимости от того, как смотрел на это менеджер команды. Они выбирали игроков для приобретения, опираясь на впечатления скаута.

Однако во второй половине XX века стали появляться признаки, указывавшие на существование более разумной тактики. В моем детстве отец каждый год приносил домой новую книгу Билла Джеймса. Джеймс, который работал охранником на заводе консервированных бобов со свининой, был одержим бейсболом. И у него был нестандартный метод анализа игры – с помощью недавно появившихся компьютеров и оцифрованных данных. Джеймс и его коллеги – они называли себя сайберметристами – при помощи анализа данных выяснили, что большинство решений, принимавшихся командами под влиянием интуиции, были полностью ошибочными.

Как часто команде нужно исполнять бант? Значительно реже, чем сейчас, говорили сайберметристы. А как часто следует красть базы? Почти никогда. Сколько должны стоить игроки, приносящие много пробежек? Больше, чем думали команды. Кого следовало приобретать? Больше питчеров из университетских команд.

Работа Джеймса производила захватывающее впечатление не только на моего отца. Билли Бин, который начинал карьеру в качестве игрока, а впоследствии переквалифицировался в бейсбольного администратора, тоже был его горячим сторонником. И став генеральным директором клуба Oakland Athletics, он решил управлять им в соответствии с принципами сайберметрики.

Идея принесла выдающиеся результаты. В книге Moneyball приводится довольно известный факт: в Oakland Athletics платили очень скромные зарплаты, но при этом команда выходила в плей-офф в 2002 и 2003 годах[4 - Michael Lewis “Moneyball: The Art of Winning an Unfair Game” (New York: Norton, 2004).]. С тех пор роль аналитики в бейсболе резко возросла. Клуб Tampa Bay Rays, о котором говорили, что он больше следует Moneyball, чем сама команда Oakland Athletics из Moneyball[5 - Jared Diamond, “How to succeed in baseball without spending money”, Wall Street Journal, October 1, 2019.], вышел в World Series 2020, несмотря на третий с конца уровень зарплат в бейсболе.

Принципы Moneyball и лежащая в их основе здравая идея, что когнитивные искажения могут быть компенсированы данными, повлияли на многие учреждения и виды спорта. Команды NBA все больше используют аналитику, прослеживающую траекторию каждого броска[6 - Ben Dowsett, “How shot-tracking is changing the way basketball players fix their game”, FiveThirtyEight, August 16, 2021, https://fivethirtyeight.com/features/how-shot-tracking-is-changing-the-way-basketball-players-fix-their-game/.]. В данных о 300 миллионах бросков были найдены значительные отклонения от оптимальной техники. Оказывается, что для среднего игрока NBA, выполняющего бросок в прыжке, вероятность пропустить бросок с недолетом вдвое выше, чем бросок с перелетом. А когда он выполняет бросок из угла, он скорее промахнется в сторону, противоположную щиту, потому что может опасаться попасть в него. Игроки воспользовались подобными данными, чтобы и корректировать когнитивные искажения, и одновременно делать больше бросков.

Фирмы Кремниевой долины в значительной степени опираются на принципы, изложенные в Moneyball. Google, где я в прошлом работал аналитиком данных, определенно верит в полезность данных при принятии важных решений. Была довольно известная история, когда оттуда уволился дизайнер, недовольный тем, что компания предпочитала данные, а не интуицию квалифицированных дизайнеров. Последней каплей для него стал эксперимент, в котором компания испытывала сорок один оттенок синего[7 - Douglas Bowman, “Goodbye, Google”, https://stopdesign.com/archive/2009/03/20/goodbye-google.html, March 20, 2009.] для гиперссылок в Gmail, чтобы выяснить на практике, какой из них даст больше всего кликов. Возможно, дизайнер и был недоволен, но эксперимент принес Google 200 миллионов долларов дополнительного дохода в год[8 - Alex Horn, “Why Google has 200m reasons to put engineers over designers”, Guardian, February 5, 2014.]. Google ни разу не поколебался в своей вере в данные – и со временем превратился в компанию ценой в 1,8 триллиона долларов. Как сказал ее бывший исполнительный директор Эрик Шмидт: «В Бога мы верим. Все остальные должны предоставлять данные»[9 - “Are we better off with the internet?” YouTube, uploaded by the Aspen Institute, July 1, 2012, https://www.youtube.com/watch?v=djVrLNaFvIo.].

Джеймс Симонс, математик мирового класса и основатель компании Renaissance Technologies, принес строгий анализ данных на Уолл-стрит. Он и его группа количественных аналитиков создали беспрецедентный массив данных, содержащий одновременно курсы акций и события реального мира, и подвергли его анализу на предмет закономерностей. Какова тенденция изменения курсов после того, как компания-эмитент объявляет о прибылях? А при дефиците хлеба? А после упоминания компании в газете?

1 2 3 4 >>
На страницу:
1 из 4