Оценить:
 Рейтинг: 0

The Variation of Animals and Plants under Domestication — Volume 2

Год написания книги
2017
<< 1 2 3 4 5 6 7 ... 18 >>
На страницу:
3 из 18
Настройки чтения
Размер шрифта
Высота строк
Поля

[Dr. P. Lucas has shown (14/25. 'L'Hered. Nat.' tome 2 pages 137-165. See also Mr. Sedgwick's four memoirs, immediately to be referred to.) that when a peculiarity, in no manner connected with the reproductive organs, appears in either parent, it is often transmitted exclusively to the offspring of the same sex, or to a much greater number of them than of the opposite sex. Thus, in the family of Lambert, the horn-like projections on the skin were transmitted from the father to his sons and grandsons alone; so it has been with other cases of ichthyosis, with supernumerary digits, with a deficiency of digits and phalanges, and in a lesser degree with various diseases, especially with colour-blindness and the haemorrhagic diathesis, that is, an extreme liability to profuse and uncontrollable bleeding from trifling wounds. On the other hand, mothers have transmitted, during several generations, to their daughters alone, supernumerary and deficient digits, colour-blindness and other peculiarities. So that the very same peculiarity may become attached to either sex, and be long inherited by that sex alone; but the attachment in certain cases is much more frequent to one than the other sex. The same peculiarities also may be promiscuously transmitted to either sex. Dr. Lucas gives other cases, showing that the male occasionally transmits his peculiarities to his daughters alone, and the mother to her sons alone; but even in this case we see that inheritance is to a certain extent, though inversely, regulated by sex. Dr. Lucas, after weighing the whole evidence, comes to the conclusion that every peculiarity tends to be transmitted in a greater or lesser degree to that sex in which it first appears. But a more definite rule, as I have elsewhere shown (14/26. 'Descent of Man' 2nd edition page 32.) generally holds good, namely, that variations which first appear in either sex at a late period of life, when the reproductive functions are active, tend to be developed in that sex alone; whilst variations which first appear early in life in either sex are commonly transmitted to both sexes. I am, however, far from supposing that this is the sole determining cause.

A few details from the many cases collected by Mr. Sedgwick (14/27. On Sexual Limitation in Hereditary Diseases 'Brit. and For. Med. — Chirurg. Review' April 1861 page 477; July page 198; April 1863 page 445; and July page 159. Also in 1867 'On the influence of Age in Hereditary Disease.'), may be here given. Colour-blindness, from some unknown cause, shows itself much oftener in males than in females; in upwards of two hundred cases collected by Mr. Sedgwick, nine-tenths related to men; but it is eminently liable to be transmitted through women. In the case given by Dr. Earle, members of eight related families were affected during five generations: these families consisted of sixty-one individuals, namely, of thirty-two males, of whom nine-sixteenths were incapable of distinguishing colour, and of twenty-nine females, of whom only one-fifteenth were thus affected. Although colour-blindness thus generally clings to the male sex, nevertheless, in one instance in which it first appeared in a female, it was transmitted during five generations to thirteen individuals, all of whom were females. The haemorrhagic diathesis, often accompanied by rheumatism, has been known to affect the males alone during five generations, being transmitted, however, through the females. It is said that deficient phalanges in the fingers have been inherited by the females alone during ten generations. In another case, a man thus deficient in both hands and feet, transmitted the peculiarity to his two sons and one daughter; but in the third generation, — out of nineteen grandchildren, twelve sons had the family defect, whilst the seven daughters were free. In ordinary cases of sexual limitation, the sons or daughters inherit the peculiarity, whatever it may be, from their father or mother, and transmit it to their children of the same sex; but generally with the haemorrhagic diathesis, and often with colour-blindness, and in some other cases, the sons never inherit the peculiarity directly from their fathers, but the daughters alone transmit the latent tendency, so that the sons of the daughters alone exhibit it. Thus the father, grandson, and great-great-grandson will exhibit a peculiarity, — the grandmother, daughter, and great-grand-daughter having transmitted it in a latent state. Hence we have, as Mr. Sedgwick remarks, a double kind of atavism or reversion; each grandson apparently receiving and developing the peculiarity from his grandfather, and each daughter apparently receiving the latent tendency from her grandmother.

From the various facts recorded by Dr. Prosper Lucas, Mr. Sedgwick, and others, there can be no doubt that peculiarities first appearing in either sex, though not in any way necessarily or invariably connected with that sex, strongly tend to be inherited by the offspring of the same sex, but are often transmitted in a latent state through the opposite sex.

Turning now to domesticated animals, we find that certain characters not proper to the parent species are often confined to, and inherited by, one sex alone; but we do not know the history of the first appearance of such characters. In the chapter on Sheep, we have seen that the males of certain races differ greatly from the females in the shape of their horns, these being absent in the ewes of some breeds; they differ also in the development of fat in the tail and in the outline of the forehead. These differences, judging from the character of the allied wild species, cannot be accounted for by supposing that they have been derived from distinct parent forms. There is, also, a great difference between the horns of the two sexes in one Indian breed of goats. The bull zebu is said to have a larger hump than the cow. In the Scotch deer-hound the two sexes differ in size more than in any other variety of the dog (14/28. W. Scrope 'Art of Deer Stalking' page 354.) and, judging from analogy, more than in the aboriginal parent-species. The peculiar colour called tortoise-shell is very rarely seen in a male cat; the males of this variety being of a rusty tint.

In various breeds of the fowl the males and females often differ greatly; and these differences are far from being the same with those which distinguish the two sexes of the parent-species, the Gallus bankiva; and consequently have originated under domestication. In certain sub-varieties of the Game race we have the unusual case of the hens differing from each other more than the cocks. In an Indian breed of a white colour shaded with black, the hens invariably have black skins, and their bones are covered by a black periosteum, whilst the cocks are never or most rarely thus characterised. Pigeons offer a more interesting case; for throughout the whole great family the two sexes do not often differ much; and the males and females of the parent-form, the C. livia, are undistinguishable: yet we have seen that with pouters the male has the characteristic quality of pouting more strongly developed than the female; and in certain sub-varieties the males alone are spotted or striated with black, or otherwise differ in colour. When male and female English carrier-pigeons are exhibited in separate pens, the difference in the development of the wattle over the beak and round the eyes is conspicuous. So that here we have instances of the appearance of secondary sexual characters in the domesticated races of a species in which such differences are naturally quite absent.]

On the other hand, secondary sexual characters which belong to the species in a state of nature are sometimes quite lost, or greatly diminished, under domestication. We see this in the small size of the tusks in our improved breeds of the pig, in comparison with those of the wild boar. There are sub- breeds of fowls, in which the males have lost the fine-flowing tail-feathers and hackles; and others in which there is no difference in colour between the two sexes. In some cases the barred plumage, which in gallinaceous birds is commonly the attribute of the hen, has been transferred to the cock, as in the cuckoo sub-breeds. In other cases masculine characters have been partly transferred to the female, as with the splendid plumage of the golden-spangled Hamburgh hen, the enlarged comb of the Spanish hen, the pugnacious disposition of the Game hen, and as in the well-developed spurs which occasionally appear in the hens of various breeds. In Polish fowls both sexes are ornamented with a topknot, that of the male being formed of hackle-like feathers, and this is a new male character in the genus Gallus. On the whole, as far as I can judge, new characters are more apt to appear in the males of our domesticated animals than in the females (14/29. I have given in my 'Descent of Man' 2nd edition page 223 sufficient evidence that male animals are usually more variable than the females.), and afterwards to be inherited exclusively or more strongly by the males. Finally, in accordance with the principle of inheritance as limited by sex, the preservation and augmentation of secondary sexual characters in natural species offers no especial difficulty, as this would follow through that form of selection which I have called sexual selection.

INHERITANCE AT CORRESPONDING PERIODS OF LIFE.

This is an important subject. Since the publication of my 'Origin of Species' I have seen no reason to doubt the truth of the explanation there given of one of the most remarkable facts in biology, namely, the difference between the embryo and the adult animal. The explanation is, that variations do not necessarily or generally occur at a very early period of embryonic growth, and that such variations are inherited at a corresponding age. As a consequence of this the embryo, even after the parent-form has undergone great modification, is left only slightly modified; and the embryos of widely-different animals which are descended from a common progenitor remain in many important respects like one another and probably like their common progenitor. We can thus understand why embryology throws a flood of light on the natural system of classification, as this ought to be as far as possible genealogical. When the embryo leads an independent life, that is, becomes a larva, it has to be adapted to the surrounding conditions in its structure and instincts, independently of those of its parents; and the principle of inheritance at corresponding periods of life renders this possible.

This principle is, indeed, in one way so obvious that it escapes attention. We possess a number of races of animals and plants, which, when compared with one another and with their parent-forms, present conspicuous differences, both in their immature and mature states. Look at the seeds of the several kinds of peas, beans, maize, which can be propagated truly, and see how they differ in size, colour, and shape, whilst the full-grown plants differ but little. Cabbages, on the other hand, differ greatly in foliage and manner of growth, but hardly at all in their seeds; and generally it will be found that the differences between cultivated plants at different periods of growth are not necessarily closely connected together, for plants may differ much in their seeds and little when full-grown, and conversely may yield seeds hardly distinguishable, yet differ much when full-grown. In the several breeds of poultry, descended from a single species, differences in the eggs and chickens whilst covered with down, in the plumage at the first and subsequent moults, as well as in the comb and wattles, are all inherited. With man peculiarities in the milk and second teeth (of which I have received the details) are inheritable, and longevity is often transmitted. So again with our improved breeds of cattle and sheep, early maturity, including the early development of the teeth, and with certain breeds of fowl the early appearance of secondary sexual characters, all come under the same head of inheritance at corresponding periods.

Numerous analogous facts could be given. The silk-moth, perhaps, offers the best instance; for in the breeds which transmit their characters truly, the eggs differ in size, colour, and shape: the caterpillars differ, in moulting three or four times, in colour, even in having a dark-coloured mark like an eyebrow, and in the loss of certain instincts; — the cocoons differ in size, shape, and in the colour and quality of the silk; these several differences being followed by slight or barely distinguishable differences in the mature moth.

But it may be said that, if in the above cases a new peculiarity is inherited, it must be at the corresponding stage of development; for an egg or seed can resemble only an egg or seed, and the horn in a full-grown ox can resemble only a horn. The following cases show inheritance at corresponding periods more plainly, because they refer to peculiarities which might have supervened, as far as we can see, earlier or later in life, yet are inherited at the same period at which they first appeared.

[In the Lambert family the porcupine-like excrescences appeared in the father and sons at the same age, namely, about nine weeks after birth. (14/30. Prichard 'Phys. Hist. of Mankind' 1851 volume 1 page 349.) In the extraordinary hairy family described by Mr. Crawfurd (14/31. 'Embassy to the Court of Ava' volume 1 page 320. The third generation is described by Capt. Yule in his 'Narrative of the Mission to the Court of Ava' 1855 page 94.), children were produced during three generations with hairy ears; in the father the hair began to grow over his body at six years old; in his daughter somewhat earlier, namely, at one year; and in both generations the milk teeth appeared late in life, the permanent teeth being afterwards singularly deficient. Greyness of hair at an unusually early age has been transmitted in some families. These cases border on diseases inherited at corresponding periods of life, to which I shall immediately refer.

It is a well-known peculiarity with almond-tumbler pigeons, that the full beauty and peculiar character of the plumage does not appear until the bird has moulted two or three times. Neumeister describes and figures a brace of pigeons in which the whole body is white except the breast, neck, and head; but in their first plumage all the white feathers have coloured edges. Another breed is more remarkable: its first plumage is black, with rusty-red wing-bars and a crescent-shaped mark on the breast; these marks then become white, and remain so during three or four moults; but after this period the white spreads over the body, and the bird loses its beauty. (14/32. 'Das Ganze der Taubenzucht' 1837 s. 24 tab. 4 figure 2 s. 21 tab. 1 figure 4.) Prize canary- birds have their wings and tail black: "this colour, however, is only retained until the first moult, so that they must be exhibited ere the change takes place. Once moulted, the peculiarity has ceased. Of course all the birds emanating from this stock have black wings and tails the first year." (14/33. Kidd 'Treatise on the Canary' page 18.) A curious and somewhat analogous account has been given (14/34. Charlesworth 'Mag. of Nat. Hist.' volume 1 1837 page 167.) of a family of wild pied rooks which were first observed in 1798, near Chalfont, and which every year from that date up to the period of the published notice, viz., 1837 "have several of their brood particoloured, black and white. This variegation of the plumage, however, disappears with the first moult; but among the next young families there are always a few pied ones." These changes of plumage, which are inherited at various corresponding periods of life in the pigeon, canary-bird, and rook, are remarkable, because the parent-species passes through no such change.

Inherited diseases afford evidence in some respects of less value than the foregoing cases, because diseases are not necessarily connected with any change in structure; but in other respects of more value, because the periods have been more carefully observed. Certain diseases are communicated to the child apparently by a process like inoculation, and the child is from the first affected; such cases may be here passed over. Large classes of diseases usually appear at certain ages, such as St. Vitus's dance in youth, consumption in early mid-life, gout later, and apoplexy still later; and these are naturally inherited at the same period. But even in diseases of this class, instances have been recorded, as with St. Vitus's dance, showing that an unusually early or late tendency to the disease is inheritable. (14/35. Dr. Prosper Lucas 'Hered. Nat.' tome 2 page 713.) In most cases the appearance of any inherited disease is largely determined by certain critical periods in each person's life, as well as by unfavourable conditions. There are many other diseases, which are not attached to any particular period, but which certainly tend to appear in the child at about the same age at which the parent was first attacked. An array of high authorities, ancient and modern, could be given in support of this proposition. The illustrious Hunter believed in it; and Piorry (14/36. 'L'Hered. dans les Maladies' 1840 page 135. For Hunter see Harlan 'Med. Researches' page 530.) cautions the physician to look closely to the child at the period when any grave inheritable disease attacked the parent. Dr. Prosper Lucas (14/37. 'L'Hered. Nat.' tome 2 page 850.), after collecting facts from every source, asserts that affections of all kinds, though not related to any particular period of life, tend to reappear in the offspring at whatever period of life they first appeared in the progenitor.

As the subject is important, it may be well to give a few instances, simply as illustrations, not as proof; for proof, recourse must be had to the authorities above quoted. Some of the following cases have been selected for the sake of showing that, when a slight departure from the rule occurs, the child is affected somewhat earlier in life than the parent. In the family of Le Compte blindness was inherited through three generations, and no less than twenty-seven children and grandchildren were all affected at about the same age; their blindness in general began to advance about the fifteenth or sixteenth year, and ended in total deprivation of sight at the age of about twenty-two. (14/38. Sedgwick 'Brit. and For. Med. — Chirurg. Review' April 1861 page 485. In some accounts the number of children and grandchildren is given as 37; but this seems to be an error judging from the paper first published in the 'Baltimore Med. and Phys. Reg.' 1809 of which Mr. Sedgwick has been so kind as to send me a copy.) In another case a father and his four children all became blind at twenty-one years old; in another, a grandmother grew blind at thirty-five, her daughter at nineteen, and three grandchildren at the ages of thirteen and eleven. (14/39. Prosper Lucas 'Hered. Nat.' tome 1 page 400.) So with deafness, two brothers, their father and paternal grandfather, all became deaf at the age of forty. (14/40. Sedgwick ibid July 1861 page 202.)

Esquirol gives several striking instances of insanity coming on at the same age, as that of a grandfather, father, and son, who all committed suicide near their fiftieth year. Many other cases could be given, as of a whole family who became insane at the age of forty. (14/41. Piorry page 109; Prosper Lucas tome 2 page 759.) Other cerebral affections sometimes follow the same rule, — for instance, epilepsy and apoplexy. A woman died of the latter disease when sixty-three years old; one of her daughters at forty-three, and the other at sixty-seven: the latter had twelve children, who all died from tubercular meningitis. (14/42. Prosper Lucas tome 2 page 748.) I mention this latter case because it illustrates a frequent occurrence, namely, a change in the precise nature of an inherited disease, though still affecting the same organ.

Asthma has attacked several members of the same family when forty years old, and other families during infancy. The most different diseases, such as angina pectoris, stone in the bladder, and various affections of the skin, have appeared in successive generations at nearly the same age. The little finger of a man began from some unknown cause to grow inwards, and the same finger in his two sons began at the same age to bend inwards in a similar manner. Strange and inexplicable neuralgic affections have caused parents and children to suffer agonies at about the same period of life. (14/43. Prosper Lucas tome 3 pages 678, 700, 702; Sedgwick ibid April 1863 page 449 and July 1863 page 162. Dr. J. Steinan 'Essay on Hereditary Disease' 1843 pages 27, 34.)

I will give only two other cases, which are interesting as illustrating the disappearance as well as the appearance of disease at the same age. Two brothers, their father, their paternal uncles, seven cousins, and their paternal grandfather, were all similarly affected by a skin-disease, called pityriasis versicolor; "the disease, strictly limited to the males of the family (though transmitted through the females), usually appeared at puberty, and disappeared at about the age of forty or forty-five years." The second case is that of four brothers, who when about twelve years old suffered almost every week from severe headaches, which were relieved only by a recumbent position in a dark room. Their father, paternal uncles, paternal grandfather, and granduncles all suffered in the same way from headaches, which ceased at the age of fifty-four or fifty-five in all those who lived so long. None of the females of the family were affected. (14/44. These cases are given by Mr. Sedgwick on the authority of Dr. H. Stewart in 'Med. — Chirurg. Review' April 1863 pages 449, 477.)]

It is impossible to read the foregoing accounts, and the many others which have been recorded, of diseases coming on during three or even more generations in several members of the same family at the same age, especially in the case of rare affections in which the coincidence cannot be attributed to chance, and to doubt that there is a strong tendency to inheritance in disease at corresponding periods of life. When the rule fails, the disease is apt to come on earlier in the child than in the parent; the exceptions in the other direction being very much rarer. Dr. Lucas (14/45. 'Hered. Nat.' tome 2 page 852.) alludes to several cases of inherited diseases coming on at an earlier period. I have already given one striking instance with blindness during three generations; and Mr. Bowman remarks that this frequently occurs with cataract. With cancer there seems to be a peculiar liability to earlier inheritance: Sir J. Paget, who has particularly attended to this subject, and tabulated a large number of cases, informs me that he believes that in nine cases out of ten the later generation suffers from the disease at an earlier period than the previous generation. He adds, "In the instances in which the opposite relation holds, and the members of later generations have cancer at a later age than their predecessors, I think it will be found that the non- cancerous parents have lived to extreme old ages." So that the longevity of a non-affected parent seems to have the power of influencing the fatal period in the offspring; and we thus apparently get another element of complexity in inheritance.

The facts, showing that with certain diseases the period of inheritance occasionally or even frequently advances, are important with respect to the general descent-theory, for they render it probable that the same thing would occur with ordinary modifications of structure. The final result of a long series of such advances would be the gradual obliteration of characters proper to the embryo and larva, which would thus come to resemble more and more closely the mature parent-form. But any structure which was of service to the embryo or larva would be preserved by the destruction at this stage of growth of each individual which manifested any tendency to lose its proper character at too early an age.

Finally, from the numerous races of cultivated plants and domestic animals, in which the seeds or eggs, the young or old, differ from one another and from those of the parent-species; — from the cases in which new characters have appeared at a particular period, and afterwards been inherited at the same period; — and from what we know with respect to disease, we must believe in the truth of the great principle of inheritance at corresponding periods of life.

SUMMARY OF THE THREE PRECEDING CHAPTERS.

Strong as is the force of inheritance, it allows the incessant appearance of new characters. These, whether beneficial or injurious, — of the most trifling importance, such as a shade of colour in a flower, a coloured lock of hair, or a mere gesture, — or of the highest importance, as when affecting the brain, or an organ so perfect and complex as the eye, — or of so grave a nature as to deserve to be called a monstrosity, — or so peculiar as not to occur normally in any member of the same natural class, — are often inherited by man, by the lower animals, and plants. In numberless cases it suffices for the inheritance of a peculiarity that one parent alone should be thus characterised. Inequalities in the two sides of the body, though opposed to the law of symmetry, may be transmitted. There is ample evidence that the effects of mutilations and of accidents, especially or perhaps exclusively when followed by disease, are occasionally inherited. There can be no doubt that the evil effects of the long-continued exposure of the parent to injurious conditions are sometimes transmitted to the offspring. So it is, as we shall see in a future chapter, with the effects of the use and disuse of parts, and of mental habits. Periodical habits are likewise transmitted, but generally, as it would appear, with little force.

Hence we are led to look at inheritance as the rule, and non-inheritance as the anomaly. But this power often appears to us in our ignorance to act capriciously, transmitting a character with inexplicable strength or feebleness. The very same peculiarity, as the weeping habit of trees, silky feathers, etc., may be inherited either firmly or not at all by different members of the same group, and even by different individuals of the same species, though treated in the same manner. In this latter case we see that the power of transmission is a quality which is merely individual in its attachment. As with single characters, so it is with the several concurrent slight differences which distinguish sub-varieties or races; for of these, some can be propagated almost as truly as species, whilst others cannot be relied on. The same rule holds good with plants, when propagated by bulbs, offsets, etc., which in one sense still form parts of the same individual, for some varieties retain or inherit through successive bud-generations their character far more truly than others.

Some characters not proper to the parent-species have certainly been inherited from an extremely remote epoch, and may therefore be considered as firmly fixed. But it is doubtful whether length of inheritance in itself gives fixedness of character; though the chances are obviously in favour of any character which has long been transmitted true or unaltered still being transmitted true as long as the conditions of life remain the same. We know that many species, after having retained the same character for countless ages, whilst living under their natural conditions, when domesticated have varied in the most diversified manner, that is, have failed to transmit their original form; so that no character appears to be absolutely fixed. We can sometimes account for the failure of inheritance by the conditions of life being opposed to the development of certain characters; and still oftener, as with plants cultivated by grafts and buds, by the conditions causing new and slight modifications incessantly to appear. In this latter case it is not that inheritance wholly fails, but that new characters are continually superadded. In some few cases, in which both parents are similarly characterised, inheritance seems to gain so much force by the combined action of the two parents, that it counteracts its own power, and a new modification is the result.

In many cases the failure of the parents to transmit their likeness is due to the breed having been at some former period crossed; and the child takes after his grandparent or more remote ancestor of foreign blood. In other cases, in which the breed has not been crossed, but some ancient character has been lost through variation, it occasionally reappears through reversion, so that the parents apparently fail to transmit their own likeness. In all cases, however, we may safely conclude that the child inherits all its characters from its parents, in whom certain characters are latent, like the secondary sexual characters of one sex in the other. When, after a long succession of bud- generations, a flower or fruit becomes separated into distinct segments, having the colours or other attributes of both parent-forms, we cannot doubt that these characters were latent in the earlier buds, though they could not then be detected, or could be detected only in an intimately commingled state. So it is with animals of crossed parentage, which with advancing years occasionally exhibit characters derived from one of their two parents, of which not a trace could at first be perceived. Certain monstrosities, which resemble what naturalists call the typical form of the group in question, apparently come under the same law of reversion. It is assuredly an astonishing fact that the male and female sexual elements, that buds, and even full-grown animals, should retain characters, during several generations in the case of crossed breeds, and during thousands of generations in the case of pure breeds, written as it were in invisible ink, yet ready at any time to be evolved under certain conditions.

What these conditions precisely are, we do not know. But any cause which disturbs the organisation or constitution seems to be sufficient. A cross certainly gives a strong tendency to the reappearance of long-lost characters, both corporeal and mental. In the case of plants, this tendency is much stronger with those species which have been crossed after long cultivation and which therefore have had their constitutions disturbed by this cause as well as by crossing, than with species which have always lived under their natural conditions and have then been crossed. A return, also, of domesticated animals and cultivated plants to a wild state favours reversion; but the tendency under these circumstances has been much exaggerated.

When individuals of the same family which differ somewhat, and when races or species are crossed, the one is often prepotent over the other in transmitting its character. A race may possess a strong power of inheritance, and yet when crossed, as we have seen with trumpeter-pigeons, yield to the prepotency of every other race. Prepotency of transmission may be equal in the two sexes of the same species, but often runs more strongly in one sex. It plays an important part in determining the rate at which one race can be modified or wholly absorbed by repeated crosses with another. We can seldom tell what makes one race or species prepotent over another; but it sometimes depends on the same character being present and visible in one parent, and latent or potentially present in the other.

Characters may first appear in either sex, but oftener in the male than in the female, and afterwards be transmitted to the offspring of the same sex. In this case we may feel confident that the peculiarity in question is really present though latent in the opposite sex! hence the father may transmit through his daughter any character to his grandson; and the mother conversely to her granddaughter. We thus learn, and the fact is an important one, that transmission and development are distinct powers. Occasionally these two powers seem to be antagonistic, or incapable of combination in the same individual; for several cases have been recorded in which the son has not directly inherited a character from his father, or directly transmitted it to his son, but has received it by transmission through his non-affected mother, and transmitted it through his non-affected daughter. Owing to inheritance being limited by sex, we see how secondary sexual characters may have arisen under nature; their preservation and accumulation being dependent on their service to either sex.

At whatever period of life a new character first appears, it generally remains latent in the offspring until a corresponding age is attained, and then is developed. When this rule fails, the child generally exhibits the character at an earlier period than the parent. On this principle of inheritance at corresponding periods, we can understand how it is that most animals display from the germ to maturity such a marvellous succession of characters.

Finally, though much remains obscure with respect to Inheritance, we may look at the following laws as fairly well established.

FIRSTLY, a tendency in every character, new and old, to be transmitted by seminal and bud generation, though often counteracted by various known and unknown causes.

SECONDLY, reversion or atavism, which depends on transmission and development being distinct powers: it acts in various degrees and manners through both seminal and bud generation.

THIRDLY, prepotency of transmission, which may be confined to one sex, or be common to both sexes.

FOURTHLY, transmission, as limited by sex, generally to the same sex in which the inherited character first appeared; and this in many, probably most cases, depends on the new character having first appeared at a rather late period of life.

FIFTHLY, inheritance at corresponding periods of life, with some tendency to the earlier development of the inherited character.

In these laws of Inheritance, as displayed under domestication, we see an ample provision for the production, through variability and natural selection, of new specific forms.

CHAPTER 2.XV

ON CROSSING.

FREE INTERCROSSING OBLITERATES THE DIFFERENCES BETWEEN ALLIED BREEDS. WHEN THE NUMBERS OF TWO COMMINGLING BREEDS ARE UNEQUAL, ONE ABSORBS THE OTHER. THE RATE OF ABSORPTION DETERMINED BY PREPOTENCY OF TRANSMISSION, BY THE CONDITIONS OF LIFE, AND BY NATURAL SELECTION. ALL ORGANIC BEINGS OCCASIONALLY INTERCROSS; APPARENT EXCEPTIONS. ON CERTAIN CHARACTERS INCAPABLE OF FUSION; CHIEFLY OR EXCLUSIVELY THOSE WHICH HAVE SUDDENLY APPEARED IN THE INDIVIDUAL. ON THE MODIFICATION OF OLD RACES, AND THE FORMATION OF NEW RACES BY CROSSING. SOME CROSSED RACES HAVE BRED TRUE FROM THEIR FIRST PRODUCTION. ON THE CROSSING OF DISTINCT SPECIES IN RELATION TO THE FORMATION OF DOMESTIC RACES.

In the two previous chapters, when discussing reversion and prepotency, I was necessarily led to give many facts on crossing. In the present chapter I shall consider the part which crossing plays in two opposed directions, — firstly, in obliterating characters, and consequently in preventing the formation of new races; and secondly, in the modification of old races, or in the formation of new and intermediate races, by a combination of characters. I shall also show that certain characters are incapable of fusion.

The effects of free or uncontrolled breeding between the members of the same variety or of closely allied varieties are important; but are so obvious that they need not be discussed at much length. It is free intercrossing which chiefly gives uniformity, both under nature and under domestication, to the individuals of the same species or variety, when they live mingled together and are not exposed to any cause inducing excessive variability. The prevention of free crossing, and the intentional matching of individual animals, are the corner-stones of the breeder's art. No man in his senses would expect to improve or modify a breed in any particular manner, or keep an old breed true and distinct, unless he separated his animals. The killing of inferior animals in each generation comes to the same thing as their separation. In savage and semi-civilised countries, where the inhabitants have not the means of separating their animals, more than a single breed of the same species rarely or never exists. In former times, even in the United States, there were no distinct races of sheep, for all had been mingled together. (15/1. 'Communications to the Board of Agriculture' volume 1 page 367.) The celebrated agriculturist Marshall (15/2. 'Review of Reports, North of England' 1808 page 200.) remarks that "sheep that are kept within fences, as well as shepherded flocks in open countries, have generally a similarity, if not a uniformity, of character in the individuals of each flock;" for they breed freely together, and are prevented from crossing with other kinds; whereas in the unenclosed parts of England the unshepherded sheep, even of the same flock, are far from true or uniform, owing to various breeds having mingled and crossed. We have seen that the half-wild cattle in each of the several British parks are nearly uniform in character; but in the different parks, from not having mingled and crossed during many generations, they differ to a certain small extent.

We cannot doubt that the extraordinary number of varieties and sub-varieties of the pigeon, amounting to at least one hundred and fifty, is partly due to their remaining, differently from other domesticated birds, paired for life once matched. On the other hand, breeds of cats imported into this country soon disappear, for their nocturnal and rambling habits render it hardly possible to prevent free crossing. Rengger (15/3. 'Saugethiere von Paraguay' 1830 s. 212.) gives an interesting case with respect to the cat in Paraguay: in all the distant parts of the kingdom it has assumed, apparently from the effects of the climate, a peculiar character, but near the capital this change has been prevented, owing, as he asserts, to the native animal frequently crossing with cats imported from Europe. In all cases like the foregoing, the effects of an occasional cross will be augmented by the increased vigour and fertility of the crossed offspring, of which fact evidence will hereafter be given; for this will lead to the mongrels increasing more rapidly than the pure parent-breeds.

When distinct breeds are allowed to cross freely, the result will be a heterogeneous body; for instance, the dogs in Paraguay are far from uniform, and can no longer be affiliated to their parent-races. (15/4. Rengger 'Saugethiere' etc. s. 154.) The character which a crossed body of animals will ultimately assume must depend on several contingencies, — namely, on the relative members of the individuals belonging to the two or more races which are allowed to mingle; on the prepotency of one race over the other in the transmission of character; and on the conditions of life to which they are exposed. When two commingled breeds exist at first in nearly equal numbers, the whole will sooner or later become intimately blended, but not so soon, both breeds being equally favoured in all respects, as might have been expected. The following calculation (15/5. White 'Regular Gradation in Man' page 146.) shows that this is the case: if a colony with an equal number of black and white men were founded, and we assume that they marry indiscriminately, are equally prolific, and that one in thirty annually dies and is born; then "in 65 years the number of blacks, whites, and mulattoes would be equal. In 91 years the whites would be 1-10th, the blacks 1-10th, and the mulattoes, or people of intermediate degrees of colour, 8-10ths of the whole number. In three centuries not 1-100th part of the whites would exist."

When one of two mingled races exceed the other greatly in number, the latter will soon be wholly, or almost wholly, absorbed and lost. (15/6. Dr. W.F. Edwards in his 'Caracteres Physiolog. des Races Humaines' page 24 first called attention to this subject, and ably discussed it.) Thus European pigs and dogs have been largely introduced in the islands of the Pacific Ocean, and the native races have been absorbed and lost in the course of about fifty or sixty years (15/7. Rev. D. Tyerman and Bennett 'Journal of Voyages' 1821-1829 volume 1 page 300.); but the imported races no doubt were favoured. Rats may be considered as semi-domesticated animals. Some snake-rats (Mus alexandrinus) escaped in the Zoological Gardens of London "and for a long time afterwards the keepers frequently caught cross-bred rats, at first half-breds, afterwards with less of the character of the snake-rat, till at length all traces of it disappeared." (15/8. Mr. S.J. Salter 'Journal Linn. Soc.' volume 6 1862 page 71.) On the other hand, in some parts of London, especially near the docks, where fresh rats are frequently imported, an endless variety of intermediate forms may be found between the brown, black, and snake rat, which are all three usually ranked as distinct species.

How many generations are necessary for one species or race to absorb another by repeated crosses has often been discussed (15/9. Sturm 'Ueber Racen, etc.' 1825 s. 107. Bronn 'Geschichte der Natur' b. 2 s. 170 gives a table of the proportions of blood after successive crosses. Dr. P. Lucas 'L'Heredite Nat.' tome 2 page 308.); and the requisite number has probably been much exaggerated. Some writers have maintained that a dozen or score, or even more generations, are necessary; but this in itself is improbable, for in the tenth generation there would be only 1-1024th part of foreign blood in the offspring. Gartner found (15/10. 'Bastarderzeugung' s. 463, 470.), that with plants, one species could be made to absorb another in from three to five generations, and he believes that this could always be effected in from six to seven generations. In one instance, however, Kolreuter (15/11. 'Nova Acta Petrop.' 1794 page 393: see also previous volume.) speaks of the offspring of Mirabilis vulgaris, crossed during eight successive generations by M. longiflora, as resembling this latter species so closely, that the most scrupulous observer could detect "vix aliquam notabilem differentiam" or, as he says, he succeeded, "ad plenariam fere transmutationem." But this expression shows that the act of absorption was not even then absolutely complete, though these crossed plants contained only the 1-256th part of M. vulgaris. The conclusions of such accurate observers as Gartner and Kolreuter are of far higher worth than those made without scientific aim by breeders. The most precise account which I have met with is given by Stonehenge (15/12. 'The Dog' 1867 pages 179-184.) and is illustrated by photographs. Mr. Hanley crossed a greyhound bitch with a bulldog; the offspring in each succeeding generation being recrossed with first-rate greyhounds. As Stonehenge remarks, it might naturally be supposed that it would take several crosses to get rid of the heavy form of the bulldog; but Hysterics, the gr-gr-granddaughter of a bulldog, showed no trace whatever of this breed in external form. She and all of the same litter, however, were "remarkably deficient in stoutness, though fast as well as clever." I believe clever refers to skill in turning. Hysterics was put to a son of Bedlamite, "but the result of the fifth cross is not as yet, I believe, more satisfactory than that of the fourth." On the other hand, with sheep, Fleischmann (15/13. As quoted in the 'True Principles of Breeding' by C.H. Macknight and Dr. H. Madden 1865 page 11.) shows how persistent the effects of a single cross may be: he says "that the original coarse sheep (of Germany) have 5500 fibres of wool on a square inch; grades of the third or fourth Merino cross produced about 8000, the twentieth cross 27,000, the perfect pure Merino blood 40,000 to 48,000." So that common German sheep crossed twenty times successively with Merino did not by any means acquire wool as fine as that of the pure breed. But in all cases, the rate of absorption will depend largely on the conditions of life being favourable to any particular character; and we may suspect that there would be a constant tendency to degeneration in the wool of Merinos under the climate of Germany, unless prevented by careful selection; and thus perhaps the foregoing remarkable case may be explained. The rate of absorption must also depend on the amount of distinguishable difference between the two forms which are crossed, and especially, as Gartner insists, on prepotency of transmission in the one form over the other. We have seen in the last chapter that one of two French breeds of sheep yielded up its character, when crossed with Merinos, very much more slowly than the other; and the common German sheep referred to by Fleischmann may be in this respect analogous. In all cases there will be more or less liability to reversion during many subsequent generations, and it is this fact which has probably led authors to maintain that a score or more of generations are requisite for one race to absorb another. In considering the final result of the commingling of two or more breeds, we must not forget that the act of crossing in itself tends to bring back long-lost characters not proper to the immediate parent-forms.

With respect to the influence of the conditions of life on any two breeds which are allowed to cross freely, unless both are indigenous and have long been accustomed to the country where they live, they will, in all probability, be unequally affected by the conditions, and this will modify the result. Even with indigenous breeds, it will rarely or never occur that both are equally well adapted to the surrounding circumstances; more especially when permitted to roam freely, and not carefully tended, as is generally the case with breeds allowed to cross. As a consequence of this, natural selection will to a certain extent come into action, and the best fitted will survive, and this will aid in determining the ultimate character of the commingled body.

How long a time it would require before such a crossed body of animals would assume a uniform character within a limited area, no one can say; that they would ultimately become uniform from free intercrossing, and from the survival of the fittest, we may feel assured; but the characters thus acquired would rarely or never, as may be inferred from the previous considerations, be exactly intermediate between those of the two parent-breeds. With respect to the very slight differences by which the individuals of the same sub-variety, or even of allied varieties, are characterised, it is obvious that free crossing would soon obliterate such small distinctions. The formation of new varieties, independently of selection, would also thus be prevented; except when the same variation continually recurred from the action of some strongly predisposing cause. We may therefore conclude that free crossing has in all cases played an important part in giving uniformity of character to all the members of the same domestic race and of the same natural species, though largely governed by natural selection and by the direct action of the surrounding conditions.

ON THE POSSIBILITY OF ALL ORGANIC BEINGS OCCASIONALLY INTERCROSSING.

But it may be asked, can free crossing occur with hermaphrodite animals and plants? All the higher animals, and the few insects which have been domesticated, have separate sexes, and must inevitably unite for each birth. With respect to the crossing of hermaphrodites, the subject is too large for the present volume, but in the 'Origin of Species' I have given a short abstract of the reasons which induce me to believe that all organic beings occasionally cross, though perhaps in some cases only at long intervals of time. (15/14. With respect to plants, an admirable essay on this subject (Die Geschlechter-Vertheilung bei den Pflanzen: 1867) has been published by Dr. Hildebrand who arrives at the same general conclusions as I have done. Various other treatises have since appeared on the same subject, more especially by Hermann Muller and Delpino.) I will merely recall the fact that many plants, though hermaphrodite in structure, are unisexual in function; — such as those called by C.K. Sprengel DICHOGAMOUS, in which the pollen and stigma of the same flower are matured at different periods; or those called by me RECIPROCALLY DIMORPHIC, in which the flower's own pollen is not fitted to fertilise its own stigma; or again, the many kinds in which curious mechanical contrivances exist, effectually preventing self-fertilisation. There are, however, many hermaphrodite plants which are not in any way specially constructed to favour intercrossing, but which nevertheless commingle almost as freely as animals with separated sexes. This is the case with cabbages, radishes, and onions, as I know from having experimented on them: even the peasants of Liguria say that cabbages must be prevented "from falling in love" with each other. In the orange tribe, Gallesio (15/15. 'Teoria della Riproduzione Vegetal' 1816 page 12.) remarks that the amelioration of the various kinds is checked by their continual and almost regular crossing. So it is with numerous other plants.
<< 1 2 3 4 5 6 7 ... 18 >>
На страницу:
3 из 18