The same naturalist found in Brazil three plants of a Bignonia growing near together. He fertilised twenty-nine flowerets on one of them with their own pollen, and they did not set a single capsule. Thirty flowers were then fertilised with pollen from a distinct plant, one of the three, and they yielded only two capsules. Lastly, five flowers were fertilised with pollen from a fourth plant growing at a distance, and all five produced capsules. Fritz Muller thinks that the three plants which grew near one another were probably seedlings from the same parent, and that from being closely related, they acted very feebly on one another. This view is extremely probable, for he has since shown in a remarkable paper (17/71. 'Jenaische Zeitschrift fur Naturwiss.' b. 7 page 22 1872 and page 441 1873. A large part of this paper has been translated in the 'American Naturalist' 1874 page 223.), that in the case of some Brazilian species of Abutilon, which are self-sterile, and between which he raised some complex hybrids, that these, if near relatives, were much less fertile inter se, than when not closely related.]
We now come to cases closely analogous with those just given, but different in so far that only certain individuals of the species are self-sterile. This self-impotence does not depend on the pollen or ovules being in an unfit state for fertilisation, for both have been found effective in union with other plants of the same or of a distinct species. The fact of plants having acquired so peculiar a constitution, that they can be fertilised more readily by the pollen of a distinct species than by their own, is exactly the reverse of what occurs with all ordinary species. For in the latter the two sexual elements of the same individual plant are of course capable of freely acting on each other; but are so constituted that they are more or less impotent when brought into union with the sexual elements of a distinct species, and produce more or less sterile hybrids.
[Gartner experimented on two plants of Lobelia fulgens, brought from separate places, and found (17/72. 'Bastarderzeugung' s. 64, 357.) that their pollen was good, for he fertilised with it L. cardinalis and syphilitica; their ovules were likewise good, for they were fertilised by the pollen of these same two species; but these two plants of L. fulgens could not be fertilised by their own pollen, as can generally be effected with perfect ease with this species. Again, the pollen of a plant of Verbascum nigrum grown in a pot was found by Gartner (17/73. Ibid s. 357.) capable of fertilising V. lychnitis and V. austriacum; the ovules could be fertilised by the pollen of V. thapsus; but the flowers could not be fertilised by their own pollen. Kolreuter, also (17/74. 'Zweite Fortsetzung' s. 10; 'Dritte Forts.' s. 40. Mr. Scott likewise fertilised fifty-four flowers of Verbascum phoeniceum, including two varieties, with their own pollen, and not a single capsule was produced. Many of the pollen-grains emitted their tubes, but only a few of them penetrated the stigmas; some slight effect however was produced, as many of the ovaries became somewhat developed: 'Journal Asiatic Soc. Bengal' 1867 page 150.), gives the case of three garden plants of Verbascum phoeniceum, which bore during two years many flowers; these he fertilised successfully with the pollen of no less than four distinct species, but they produced not a seed with their own apparently good pollen; subsequently these same plants, and others raised from seed, assumed a strangely fluctuating condition, being temporarily sterile on the male or female side, or on both sides, and sometimes fertile on both sides; but two of the plants were perfectly fertile throughout the summer.
With Reseda odorata I have found certain individuals quite sterile with their own pollen, and so it is with the indigenous Reseda lutea. The self-sterile plants of both species were perfectly fertile when crossed with pollen from any other individual of the same species. These observations will hereafter be published in another work, in which I shall also show that seeds sent to me by Fritz Muller produced by plants of Eschscholtzia californica which were quite self-sterile in Brazil, yielded in this country plants which were only slightly self-sterile.
It appears (17/75. Duvernoy quoted by Gartner 'Bastarderzeugung' s. 334) that certain flowers on certain plants of Lilium candidum can be fertilised more freely by pollen from a distinct individual than by their own. So, again, with the varieties of the potato. Tinzmann (17/76. 'Gardener's Chronicle' 1846 page 183.), who made many trials with this plant, says that pollen from another variety sometimes "exerts a powerful influence, and I have found sorts of potatoes which would not bear seed from impregnation with the pollen of their own flowers would bear it when impregnated with other pollen." It does not, however, appear to have been proved that the pollen which failed to act on the flower's own stigma was in itself good.
In the genus Passiflora it has long been known that several species do not produce fruit, unless fertilised by pollen taken from distinct species: thus, Mr. Mowbray (17/77. 'Transact. Hort. Soc.' volume 7 1830 page 95.) found that he could not get fruit from P. alata and racemosa except by reciprocally fertilising them with each other's pollen; and similar facts have been observed in Germany and France. (17/78. Prof. Lecoq 'De la Fecondation' 1845 page 70; Gartner 'Bastarderzeugung' s. 64.) I have received two accounts of P. quadrangularis never producing fruit from its own pollen, but doing so freely when fertilised in one case with the pollen of P. coerulea, and in another case with that of P. edulis. But in three other cases this species fruited freely when fertilised with its own pollen; and the writer in one case attributed the favourable result to the temperature of the house having been raised from 5 deg to 10 deg Fahr. above the former temperature, after the flowers were fertilised. (17/79. 'Gardener's Chronicle' 1868 page 1341.) With respect to P. laurifolia, a cultivator of much experience has recently remarked (17/80. 'Gardener's Chronicle' 1866 page 1068.) that the flowers "must be fertilised with the pollen of P. coerulea, or of some other common kind, as their own pollen will not fertilise them." But the fullest details on this subject have been given by Messrs. Scott and Robertson Munro (17/81. 'Journal of Proc. of Linn. Soc.' volume 8 1864 page 1168. Mr. Robertson Munro in 'Trans. Bot. Soc.' of Edinburgh volume 9 page 399.): plants of Passiflora racemosa, coerulea, and alata flowered profusely during many years in the Botanic Gardens of Edinburgh, and, though repeatedly fertilised with their own pollen, never produced any seed; yet this occurred at once with all three species when they were crossed together in various ways. In the case of P. coerulea three plants, two of which grew in the Botanic Gardens, were all rendered fertile, merely by impregnating each with pollen of one of the others. The same result was attained in the same manner with P. alata, but with only one plant out of three. As so many self-sterile species of Passiflora have been mentioned, it should be stated that the flowers of the annual P. gracilis are nearly as fertile with their own pollen as with that from a distinct plant; thus sixteen flowers spontaneously self-fertilised produced fruit, each containing on an average 21.3 seed, whilst fruit from fourteen crossed flowers contained 24.1 seed.
Returning to P. alata, I have received (1866) some interesting details from Mr. Robertson Munro. Three plants, including one in England, have already been mentioned which were inveterately self-sterile, and Mr. Munro informs me of several others which, after repeated trials during many years, have been found in the same predicament. At some other places, however, this species fruits readily when fertilised with its own pollen. At Taymouth Castle there is a plant which was formerly grafted by Mr. Donaldson on a distinct species, name unknown, and ever since the operation it has produced fruit in abundance by its own pollen; so that this small and unnatural change in the state of this plant has restored its self-fertility! Some of the seedlings from the Taymouth Castle plant were found to be not only sterile with their own pollen, but with each other's pollen, and with the pollen of distinct species. Pollen from the Taymouth plant failed to fertilise certain plants of the same species, but was successful on one plant in the Edinburgh Botanic Gardens. Seedlings were raised from this latter union, and some of their flowers were fertilised by Mr. Munro with their own pollen; but they were found to be as self-impotent as the mother-plant had always proved, except when fertilised by the grafted Taymouth plant, and except, as we shall see, when fertilised by her own seedlings. For Mr. Munro fertilised eighteen flowers on the self-impotent mother-plant with pollen from these her own self-impotent seedlings, and obtained, remarkable as the fact is, eighteen fine capsules full of excellent seed! I have met with no case in regard to plants which shows so well as this of P. alata, on what small and mysterious causes complete fertility or complete sterility depends.]
The facts hitherto given relate to the much-lessened or completely destroyed fertility of pure species when impregnated with their own pollen, in comparison with their fertility when impregnated by distinct individuals or distinct species; but closely analogous facts have been observed with hybrids.
[Herbert states (17/82. 'Amaryllidaceae' 1837 page 371; 'Journal of Hort. Soc.' volume 2 1847 page 19.) that having in flower at the same time nine hybrid Hippeastrums, of complicated origin, descended from several species, he found that "almost every flower touched with pollen from another cross produced seed abundantly, and those which were touched with their own pollen either failed entirely, or formed slowly a pod of inferior size, with fewer seeds." In the 'Horticultural Journal' he adds that "the admission of the pollen of another cross-bred Hippeastrum (however complicated the cross) to any one flower of the number, is almost sure to check the fructification of the others." In a letter written to me in 1839, Dr. Herbert says that he had already tried these experiments during five consecutive years, and he subsequently repeated them, with the same invariable result. He was thus led to make an analogous trial on a pure species, namely, on the Hippeastrum aulicum, which he had lately imported from Brazil: this bulb produced four flowers, three of which were fertilised by their own pollen, and the fourth by the pollen of a triple cross between H. bulbulosum, reginae, and vittatum; the result was, that "the ovaries of the three first flowers soon ceased to grow, and after a few days perished entirely: whereas the pod impregnated by the hybrid made vigorous and rapid progress to maturity, and bore good seed, which vegetated freely." This is, indeed, as Herbert remarks, "a strange truth," but not so strange as it then appeared.
As a confirmation of these statements, I may add that Mr. M. Mayes (17/83. Loudon's 'Gardener's Magazine' volume 11 1835 page 260.) after much experience in crossing the species of Amaryllis (Hippeastrum), says, "neither the species nor the hybrids will, we are well aware, produce seed so abundantly from their own pollen as from that of others." So, again, Mr. Bidwell, in New South Wales (17/84. 'Gardener's Chronicle' 1850 page 470.) asserts that Amaryllis belladonna bears many more seeds when fertilised by the pollen of Brunswigia (Amaryllis of some authors) josephinae or of B. multiflora, than when fertilised by its own pollen. Mr. Beaton dusted four flowers of a Cyrtanthus with their own pollen, and four with the pollen of Vallota (Amaryllis) purpurea; on the seventh day "those which received their own pollen slackened their growth, and ultimately perished; those which were crossed with the Vallota held on." (17/85. 'Journal Hort. Soc.' volume 5 page 135. The seedlings thus raised were given to the Hort. Soc.; but I find, on inquiry, that they unfortunately died the following winter.) These latter cases, however, relate to uncrossed species, like those before given with respect to Passiflora, Orchids, etc., and are here referred to only because the plants belong to the same group of Amaryllidaceae.
In the experiments on the hybrid Hippeastrums, if Herbert had found that the pollen of two or three kinds alone had been more efficient on certain kinds than their own pollen, it might have been argued that these, from their mixed parentage, had a closer mutual affinity than the others; but this explanation is inadmissible, for the trials were made reciprocally backwards and forwards on nine different hybrids; and a cross, whichever way taken, always proved highly beneficial. I can add a striking and analogous case from experiments made by the Rev. A. Rawson, of Bromley Common, with some complex hybrids of Gladiolus. This skilful horticulturist possessed a number of French varieties, differing from each other only in the colour and size of the flowers, all descended from Gandavensis, a well-known old hybrid, said to be descended from G. natalensis by the pollen of G. oppositiflorus. (17/86. Mr. D. Beaton in 'Journal of Hort.' 1861 page 453. Lecoq however ('De la Fecond.' 1862 page 369) states that this hybrid is descended from G. psittacinus and cardinalis; but this is opposed to Herbert's experience, who found that the former species could not be crossed.) Mr. Rawson, after repeated trials, found that none of the varieties would set seed with their own pollen, although taken from distinct plants of the same variety (which had, of course, been propagated by bulbs), but that they all seeded freely with pollen from any other variety. To give two examples: Ophir did not produce a capsule with its own pollen, but when fertilised with that of Janire, Brenchleyensis, Vulcain and Linne, it produced ten fine capsules; but the pollen of Ophir was good, for when Linne was fertilised by it seven capsules were produced. This latter variety, on the other hand, was utterly barren with its own pollen, which we have seen was perfectly efficient on Ophir. Altogether, Mr. Rawson, in the year 1861 fertilised twenty-six flowers borne by four varieties with pollen taken from other varieties, and every single flower produced a fine seed-capsule; whereas fifty-two flowers on the same plants, fertilised at the same time with their own pollen, did not yield a single seed-capsule. Mr. Rawson fertilised, in some cases, the alternate flowers, and in other cases all those down one side of the spike, with pollen of other varieties, and the remaining flowers with their own pollen. I saw these plants when the capsules were nearly mature, and their curious arrangement at once brought full conviction to the mind that an immense advantage had been derived from crossing these hybrids.
Lastly, I have heard from Dr. E. Bornet, of Antibes, who has made numerous experiments in crossing the species of Cistus, but has not yet published the results, that, when any of these hybrids are fertile, they may be said to be, in regard to function, dioecious; "for the flowers are always sterile when the pistil is fertilised by pollen taken from the same flower or from flowers on the same plant. But they are often fertile if pollen be employed from a distinct individual of the same hybrid nature, or from a hybrid made by a reciprocal cross."]
CONCLUSION.
That plants should be self-sterile, although both sexual elements are in a fit state for reproduction, appears at first sight opposed to all analogy. With respect to the species, all the individuals of which are in this state, although living under their natural conditions, we may conclude that their self-sterility has been acquired for the sake of effectually preventing self- fertilisation. The case is closely analogous with that of dimorphic and trimorphic or heterostyled plants, which can be fully fertilised only by plants belonging to a different form, and not, as in the foregoing cases, indifferently by any other individual of the species. Some of these hetero- styled plants are completely sterile with pollen taken from the same plant or from the same form. With respect to species living under their natural conditions, of which only certain individuals are self-sterile (as with Reseda lutea), it is probable that these have been rendered self-sterile to ensure occasional cross-fertilisation, whilst other individuals have remained self- fertile to ensure the propagation of the species. The case seems to be parallel with that of plants which produce, as Hermann Muller has discovered, two forms — one bearing more conspicuous flowers with their structure adapted for cross-fertilisation by insects, and the other form with less conspicuous flowers adapted for self-fertilisation. The self-sterility, however, of some of the foregoing plants is incidental on the conditions to which they have been subjected, as with the Eschscholtzia, the Verbascum phoeniceum (the sterility of which varied according to the season), and with the Passiflora alata, which recovered its self-fertility when grafted on a different stock.
It is interesting to observe in the above several cases the graduated series from plants which, when fertilised by their own pollen, yield the full number of seeds, but with the seedlings a little dwarfed in stature — to plants which when self-fertilised yield few seeds — to those which yield none, but have their ovaria somewhat developed — and, lastly, to those in which the plant's own pollen and stigma mutually act on one another like poison. It is also interesting to observe on how slight a difference in the nature of the pollen or of the ovules complete self-sterility or complete self-fertility must depend in some of the above cases. Every individual of the self-sterile species appears to be capable of producing the full complement of seed when fertilised by the pollen of any other individual (though judging from the facts given with respect to Abutilon the nearest kin must be excepted); but not one individual can be fertilised by its own pollen. As every organism differs in some slight degree from every other individual of the same species, so no doubt it is with their pollen and ovules; and in the above cases we must believe that complete self-sterility and complete self-fertility depend on such slight differences in the ovules and pollen, and not their having been differentiated in some special manner in relation to one another; for it is impossible that the sexual elements of many thousand individuals should have been specialised in relation to every other individual. In some, however, of the above cases, as with certain Passifloras, an amount of differentiation between the pollen and ovules sufficient for fertilisation is gained only by employing pollen from a distinct species; but this is probably the result of such plants having been rendered somewhat sterile from the unnatural conditions to which they have been exposed.
Exotic animals confined in menageries are sometimes in nearly the same state as the above-described self-impotent plants; for, as we shall see in the following chapter, certain monkeys, the larger carnivora, several finches, geese, and pheasants, cross together, quite as freely as, or even more freely than the individuals of the same species breed together. Cases will, also, be given of sexual incompatibility between certain, male and female domesticated animals, which, nevertheless, are fertile when matched with any other individual of the same kind.
In the early part of this chapter it was shown that the crossing of individuals belonging to distinct families of the same race, or to different races or species, gives increased size and constitutional vigour to the offspring, and, except in the case of crossed species, increased fertility. The evidence rests on the universal testimony of breeders (for it should be observed that I am not here speaking of the evil results of close interbreeding), and is practically exemplified in the higher value of cross- bred animals for immediate consumption. The good results of crossing have also been demonstrated with some animals and with numerous plants, by actual weight and measurement. Although animals of pure blood will obviously be deteriorated by crossing, as far as their characteristic qualities are concerned, there seems to be no exception to the rule that advantages of the kind just mentioned are thus gained, even when there has not been any previous close interbreeding; and the rule applies to such animals as cattle and sheep, which can long resist breeding in-and-in between the nearest blood-relations.
In the case of crossed species, although size, vigour, precocity, and hardiness are, with rare exceptions, gained, fertility, in a greater or less degree, is lost; but the gain in the above respects can hardly be attributed to the principle of compensation; for there is no close parallelism between the increased size and vigour of hybrid offspring and their sterility. Moreover, it has been clearly proved that mongrels which are perfectly fertile gain these same advantages as well as sterile hybrids.
With the higher animals no special adaptations for ensuring occasional crosses between distinct families seem to exist. The eagerness of the males, leading to severe competition between them, is sufficient; for even with gregarious animals, the old and dominant males will be dispossessed after a time and it would be a mere chance if a closely related member of the same family were to be the victorious successor. The structure of many of the lower animals, when they are hermaphrodites, is such as to prevent the ovules being fertilised by the male element of the same individual; so that the concourse of two individuals is necessary. In other cases the access of the male element of a distinct individual is at least possible. With plants, which are affixed to the ground and cannot wander from place to place like animals, the numerous adaptations for cross-fertilisation are wonderfully perfect, as has been admitted by every one who has studied the subject.
The evil consequences of long-continued close interbreeding are not so easily recognised as the good effects from crossing, for the deterioration is gradual. Nevertheless, it is the general opinion of those who have had most experience, especially with animals which propagate quickly, that evil does inevitably follow sooner or later, but at different rates with different animals. No doubt a false belief may, like a superstition, prevail widely; yet it is difficult to suppose that so many acute observers have all been deceived at the expense of much cost and trouble. A male animal may sometimes be paired with his daughter, granddaughter, and so on, even for seven generations, without any manifest bad result: but the experiment has never been tried of matching brothers and sisters, which is considered the closest form of interbreeding, for an equal number of generations. There is good reason to believe that by keeping the members of the same family in distinct bodies, especially if exposed to somewhat different conditions of life, and by occasionally crossing these families, the evil results of interbreeding may be much diminished or quite eliminated. These results are loss of constitutional vigour, size, and fertility; but there is no necessary deterioration in the general form of the body, or in other good qualities. We have seen that with pigs first-rate animals have been produced after long-continued close interbreeding, though they had become extremely infertile when paired with their near relations. The loss of fertility, when it occurs, seems never to be absolute, but only relative to animals of the same blood; so that this sterility is to a certain extent analogous with that of self-impotent plants which cannot be fertilised by their own pollen, but are perfectly fertile with pollen of any other individual of the same species. The fact of infertility of this peculiar nature being one of the results of long-continued interbreeding, shows that interbreeding does not act merely by combining and augmenting various morbid tendencies common to both parents; for animals with such tendencies, if not at the time actually ill, can generally propagate their kind. Although offspring descended from the nearest blood-relations are not necessarily deteriorated in structure, yet some authors believe that they are eminently liable to malformations; and this is not improbable, as everything which lessens the vital powers acts in this manner. Instances of this kind have been recorded in the case of pigs, bloodhounds, and some other animals.
Finally, when we consider the various facts now given which plainly show that good follows from crossing, and less plainly that evil follows from close interbreeding, and when we bear in mind that with very many organisms elaborate provisions have been made for the occasional union of distinct individuals, the existence of a great law of nature is almost proved; namely, that the crossing of animals and plants which are not closely related to each other is highly beneficial or even necessary, and that interbreeding prolonged during many generations is injurious.
CHAPTER 2.XVIII
ON THE ADVANTAGES AND DISADVANTAGES OF CHANGED CONDITIONS OF LIFE: STERILITY FROM VARIOUS CAUSES.
ON THE GOOD DERIVED FROM SLIGHT CHANGES IN THE CONDITIONS OF LIFE. STERILITY FROM CHANGED CONDITIONS, IN ANIMALS, IN THEIR NATIVE COUNTRY AND IN MENAGERIES. MAMMALS, BIRDS, AND INSECTS. LOSS OF SECONDARY SEXUAL CHARACTERS AND OF INSTINCTS. CAUSES OF STERILITY. STERILITY OF DOMESTICATED ANIMALS FROM CHANGED CONDITIONS. SEXUAL INCOMPATIBILITY OF INDIVIDUAL ANIMALS. STERILITY OF PLANTS FROM CHANGED CONDITIONS OF LIFE. CONTABESCENCE OF THE ANTHERS. MONSTROSITIES AS A CAUSE OF STERILITY. DOUBLE FLOWERS. SEEDLESS FRUIT. STERILITY FROM THE EXCESSIVE DEVELOPMENT OF THE ORGANS OF VEGETATION. FROM LONG-CONTINUED PROPAGATION BY BUDS. INCIPIENT STERILITY THE PRIMARY CAUSE OF DOUBLE FLOWERS AND SEEDLESS FRUIT.
ON THE GOOD DERIVED FROM SLIGHT CHANGES IN THE CONDITIONS OF LIFE.
In considering whether any facts were known which might throw light on the conclusion arrived at in the last chapter, namely, that benefits ensue from crossing, and that it is a law of nature that all organic beings should occasionally cross, it appeared to me probable that the good derived from slight changes in the conditions of life, from being an analogous phenomenon, might serve this purpose. No two individuals, and still less no two varieties, are absolutely alike in constitution and structure; and when the germ of one is fertilised by the male element of another, we may believe that it is acted on in a somewhat similar manner as an individual when exposed to slightly changed conditions. Now, every one must have observed the remarkable influence on convalescents of a change of residence, and no medical man doubts the truth of this fact. Small farmers who hold but little land are convinced that their cattle derive great benefit from a change of pasture. In the case of plants, the evidence is strong that a great advantage is derived from exchanging seeds, tubers, bulbs, and cuttings from one soil or place to another as different as possible.
[The belief that plants are thus benefited, whether or not well founded, has been firmly maintained from the time of Columella, who wrote shortly after the Christian era, to the present day; and it now prevails in England, France, and Germany. (18/1. For England see below. For Germany see Metzger 'Getreidearten' 1841 s. 63. For France Loiseleur-Deslongchamps ('Consid. sur les Cereales' 1843 page 200) gives numerous references on this subject. For Southern France see Godron 'Florula Juvenalis' 1854 page 28.) A sagacious observer, Bradley, writing in 1724 (18/2. 'A General Treatise of Husbandry' volume 3 page 58.), says, "When we once become Masters of a good Sort of Seed, we should at least put it into Two or Three Hands, where the Soils and Situations are as different as possible; and every Year the Parties should change with one another; by which Means, I find the Goodness of the Seed will be maintained for several Years. For Want of this Use many Farmers have failed in their Crops and been great Losers." He then gives his own practical experience on this head. A modern writer (18/3. 'Gardener's Chronicle and Agricult. Gazette' 1858 page 247; and for the second statement, Ibid 1850 page 702. On this same subject see also Rev. D. Walker 'Prize Essay of Highland Agricult. Soc.' volume 2 page 200. Also Marshall 'Minutes of Agriculture' November 1775.) asserts, "Nothing can be more clearly established in agriculture than that the continual growth of any one variety in the same district makes it liable to deterioration either in quality or quantity." Another writer states that he sowed close together in the same field two lots of wheat-seed, the product of the same original stock, one of which had been grown on the same land and the other at a distance, and the difference in favour of the crop from the latter seed was remarkable. A gentleman in Surrey who has long made it his business to raise wheat to sell for seed, and who has constantly realised in the market higher prices than others, assures me that he finds it indispensable continually to change his seed; and that for this purpose he keeps two farms differing much in soil and elevation.
With respect to the tubers of the potato, I find that at the present day the practice of exchanging sets is almost everywhere followed. The great growers of potatoes in Lancashire formerly used to get tubers from Scotland, but they found that "a change from the moss-lands, and vice versa, was generally sufficient." In former times in France the crop of potatoes in the Vosges had become reduced in the course of fifty or sixty years in the proportion from 120-150 to 30-40 bushels; and the famous Oberlin attributed the surprising good which he effected in large part to changing the sets. (18/4. Oberlin 'Memoirs' English translation page 73. For Lancashire see Marshall 'Review of Reports' 1808 page 295.)
A well-known practical gardener, Mr. Robson (18/5. 'Cottage Gardener' 1856 page 186. For Mr. Robson's subsequent statements see 'Journal of Horticulture' February 18, 1866 page 121. For Mr. Abbey's remarks on grafting etc. Ibid July 18, 1865 page 44.) positively states that he has himself witnessed decided advantage from obtaining bulbs of the onion, tubers of the potato, and various seeds, all of the same kind, from different soils and distant parts of England. He further states that with plants propagated by cuttings, as with the Pelargonium, and especially the Dahlia, manifest advantage is derived from getting plants of the same variety, which have been cultivated in another place; or, "where the extent of the place allows, to take cuttings from one description of soil to plant on another, so as to afford the change that seems so necessary to the well-being of the plants." He maintains that after a time an exchange of this nature is "forced on the grower, whether he be prepared for it or not." Similar remarks have been made by another excellent gardener, Mr. Fish, namely, that cuttings of the same variety of Calceolaria, which he obtained from a neighbour, "showed much greater vigour than some of his own that were "treated in exactly the same manner," and he attributed this solely to his own plants having become "to a certain extent worn out or tired of their quarters." Something of this kind apparently occurs in grafting and budding fruit-trees; for, according to Mr. Abbey, grafts or buds generally take with greater facility on a distinct variety or even species, or on a stock previously grafted, than on stocks raised from seeds of the variety which is to be grafted; and he believes this cannot be altogether explained by the stocks in question being better adapted to the soil and climate of the place. It should, however, be added, that varieties grafted or budded on very distinct kinds, though they may take more readily and grow at first more vigorously than when grafted on closely allied stocks, afterwards often become unhealthy.
I have studied M. Tessier's careful and elaborate experiments (18/6. 'Mem. de l'Acad. des Sciences' 1790 page 209.) made to disprove the common belief that good is derived from a change of seed; and he certainly shows that the same seed may with care be cultivated on the same farm (it is not stated whether on exactly the same soil) for ten consecutive years without loss. Another excellent observer, Colonel Le Couteur (18/7. 'On the Varieties of Wheat' page 52.) has come to the same conclusion; but then he expressly adds, if the same seed be used, "that which is grown on land manured from the mixen one year becomes seed for land prepared with lime, and that again becomes seed for land dressed with ashes, then for land dressed with mixed manure, and so on." But this in effect is a systematic exchange of seed, within the limits of the same farm.]
On the whole the belief, which has long been held by many cultivators, that good follows from exchanging seed, tubers, etc., seems to be fairly well founded. It seems hardly credible that the advantage thus derived can be due to the seeds, especially if very small ones, obtaining in one soil some chemical element deficient in the other and in sufficient quantity to influence the whole after-growth of the plant. As plants after once germinating are fixed to the same spot, it might have been anticipated that they would show the good effects of a change more plainly than do animals which continually wander about; and this apparently is the case. Life depending on, or consisting in, an incessant play of the most complex forces, it would appear that their action is in some way stimulated by slight changes in the circumstances to which each organism is exposed. All forces throughout nature, as Mr. Herbert Spencer (18/8. Mr. Spencer has fully and ably discussed this whole subject in his 'Principles of Biology' 1864 volume 2 chapter 10. In the first edition of my 'Origin of Species' 1859 page 267, I spoke of the good effects from slight changes in the conditions of life and from cross-breeding, and of the evil effects from great changes in the conditions and from crossing widely distinct forms, as a series of facts "connected together by some common but unknown bond, which is essentially related to the principle of life.) remarks, tend towards an equilibrium, and for the life of each organism it is necessary that this tendency should be checked. These views and the foregoing facts probably throw light, on the one hand, on the good effects of crossing the breed, for the germ will be thus slightly modified or acted on by new forces; and on the other hand, on the evil effects of close interbreeding prolonged during many generations, during which the germ will be acted on by a male having almost identically the same constitution.
STERILITY FROM CHANGED CONDITIONS OF LIFE.
I will now attempt to show that animals and plants, when removed from their natural conditions, are often rendered in some degree infertile or completely barren; and this occurs even when the conditions have not been greatly changed. This conclusion is not necessarily opposed to that at which we have just arrived, namely, that lesser changes of other kinds are advantageous to organic beings. Our present subject is of some importance, from having an intimate connection with the causes of variability. Indirectly it perhaps bears on the sterility of species when crossed: for as, on the one hand, slight changes in the conditions of life are favourable to plants and animals, and the crossing of varieties adds to the size, vigour, and fertility of their offspring; so, on the other hand, certain other changes in the conditions of life cause sterility; and as this likewise ensues from crossing much-modified forms or species, we have a parallel and double series of facts, which apparently stand in close relation to each other.
It is notorious that many animals, though perfectly tamed, refuse to breed in captivity. Isidore Geoffroy St. — Hilaire (18/9. 'Essais de Zoologie Generale' 1841 page 256.) consequently has drawn a broad distinction between tamed animals which will not breed under captivity, and truly domesticated animals which breed freely — generally more freely, as shown in the sixteenth chapter, than in a state of nature. It is possible and generally easy to tame most animals; but experience has shown that it is difficult to get them to breed regularly, or even at all. I shall discuss this subject in detail; but will give only those cases which seem most illustrative. My materials are derived from notices scattered through various works, and especially from a Report, kindly drawn up for me by the officers of the Zoological Society of London, which has especial value, as it records all the cases, during nine years from 1838-46, in which the animals were seen to couple but produced no offspring, as well as the cases in which they never, as far as known, coupled. This MS. Report I have corrected by the annual Reports subsequently published up to the year 1865. (18/10. Since the appearance of the first edition of this work, Mr. Sclater has published ('Proc. Zoolog. Soc.' 1868 page 623) a list of the species of mammals which have bred in the gardens from 1848 to 1867 inclusive. Of the Artiodactyla 85 species have been kept, and of these 1 species in 1.9 have bred at least once during the 20 years; of 28 Marsupialia, 1 in 2.5 have bred; of 74 Carnivora, 1 in 3.0 have bred; of 52 Rodentia, 1 in 4.7 have bred; and of Quadrumana 75 species have been kept, and 1 in 6.2 have bred.) Many facts are given on the breeding of the animals in that magnificent work, 'Gleanings from the Menageries of Knowsley Hall' by Dr. Gray. I made, also, particular inquiries from the experienced keeper of the birds in the old Surrey Zoological Gardens. I should premise that a slight change in the treatment of animals sometimes makes a great difference in their fertility; and it is probable that the results observed in different menageries would differ. Indeed, some animals in our Zoological Gardens have become more productive since the year 1846. It is, also, manifest from F. Cuvier's account of the Jardin des Plantes (18/11. Du Rut 'Annales du Museum' 1807 tome 9 page 120.) that the animals formerly bred much less freely there than with us; for instance, in the Duck tribe, which is highly prolific, only one species had at that period produced young.
[The most remarkable cases, however, are afforded by animals kept in their native country, which, though perfectly tamed, quite healthy, and allowed some freedom, are absolutely incapable of breeding. Rengger (18/12. 'Saugethiere von Paraguay' 1830 s. 49, 106, 118, 124, 201, 208, 249, 265, 327.), who in Paraguay particularly attended to this subject, specifies six quadrupeds in this condition; and he mentions two or three others which most rarely breed. Mr. Bates, in his admirable work on the Amazons, strongly insists on similar cases (18/13. 'The Naturalist on the Amazons' 1863 volume 1 pages 99, 193; volume 2 page 113.); and he remarks, that the fact of thoroughly tamed native mammals and birds not breeding when kept by the Indians, cannot be wholly accounted for by their negligence or indifference, for the turkey and fowl are kept and bred by various remote tribes. In almost every part of the world — for instance, in the interior of Africa, and in several of the Polynesian islands — the natives are extremely fond of taming the indigenous quadrupeds and birds; but they rarely or never succeed in getting them to breed.
The most notorious case of an animal not breeding in captivity is that of the elephant. Elephants are kept in large numbers in their native Indian home, live to old age, and are vigorous enough for the severest labour; yet, with a very few exceptions, they have never been known even to couple, though both males and females have their proper periodical seasons. If, however, we proceed a little eastward to Ava, we hear from Mr. Crawfurd (18/14. 'Embassy to the Court of Ava' volume 1 page 534.) that their "breeding in the domestic state, or at least in the half-domestic state in which the female elephants are generally kept, is of everyday occurrence;" and Mr. Crawfurd informs me that he believes that the difference must be attributed solely to the females being allowed to roam the forest with some degree of freedom. The captive rhinoceros, on the other hand, seems from Bishop Heber's account (18/15. 'Journal' volume 1 page 213.) to breed in India far more readily than the elephant. Four wild species of the horse genus have bred in Europe, though here exposed to a great change in their natural habits of life; but the species have generally been crossed one with another. Most of the members of the pig family breed readily in our menageries; even the Red River hog (Potamochoerus penicillatus), from the sweltering plains of West Africa, has bred twice in the Zoological Gardens. Here also the Peccary (Dicotyles torquatus) has bred several times; but another species, the D. labiatus, though rendered so tame as to be half-domesticated, is said to breed so rarely in its native country of Paraguay, that according to Rengger (18/16. 'Saugethiere' s. 327.) the fact requires confirmation. Mr. Bates remarks that the tapir, though often kept tame in Amazonia by the Indians, never breeds.
Ruminants generally breed quite freely in England, though brought from widely different climates, as may be seen in the Annual Reports of the Zoological Gardens, and in the Gleanings from Lord Derby's menagerie.
The Carnivora, with the exception of the Plantigrade division, breed (though with capricious exceptions) about half as freely as ruminants. Many species of Felidae have bred in various menageries, although imported from diverse climates and closely confined. Mr. Bartlett, the present superintendent of the Zoological Gardens (18/17. On the Breeding of the Larger Felidae 'Proc. Zoolog. Soc.' 1861 page 140.) remarks that the lion appears to breed more frequently and to bring forth more young at a birth than any other species of the family. He adds that the tiger has rarely bred; "but there are several well-authenticated instances of the female tiger breeding with the lion." Strange as the fact may appear, many animals under confinement unite with distinct species and produce hybrids quite as freely as, or even more freely than, with their own species. On inquiring from Dr. Falconer and others, it appears that the tiger when confined in India does not breed, though it has been known to couple. The chetah (Felis jubata) has never been known by Mr. Bartlett to breed in England, but it has bred at Frankfort; nor does it breed in India, where it is kept in large numbers for hunting; but no pains would be taken to make them breed, as only those animals which have hunted for themselves in a state of nature are serviceable and worth training. (18/18. Sleeman's 'Rambles in India' volume 2 page 10.) According to Rengger, two species of wild cats in Paraguay, though thoroughly tamed, have never bred. Although so many of the Felidae breed readily in the Zoological Gardens, yet conception by no means always follows union: in the nine-year Report, various species are specified which were observed to couple seventy-three times, and no doubt this must have passed many times unnoticed; yet from the seventy- three unions only fifteen births ensued. The Carnivora in the Zoological Gardens were formerly less freely exposed to the air and cold than at present, and this change of treatment, as I was assured by the former superintendent, Mr. Miller, greatly increased their fertility. Mr. Bartlett, and there cannot be a more capable judge, says, "it is remarkable that lions breed more freely in travelling collections than in the Zoological Gardens; probably the constant excitement and irritation produced by moving from place to place, or change of air, may have considerable influence in the matter."
Many members of the Dog family breed readily when confined. The Dhole is one of the most untamable animals in India, yet a pair kept there by Dr. Falconer produced young. Foxes, on the other hand, rarely breed, and I have never heard of such an occurrence with the European fox: the silver fox of North America (Canis argentatus), however, has bred several times in the Zoological Gardens. Even the otter has bred there. Every one knows how readily the semi- domesticated ferret breeds, though shut up in miserably small cages; but other species of Viverra and Paradoxurus absolutely refuse to breed in the Zoological Gardens. The Genetta has bred both here and in the Jardin des Plantes, and produced hybrids. The Herpestes fasciatus has likewise bred; but I was formerly assured that the H. griseus, though many were kept in the Gardens, never bred.
The Plantigrade Carnivora breed under confinement much less freely than other Carnivora, although no reason can be assigned for this fact. In the nine-year Report it is stated that the bears had been seen in the Zoological Gardens to couple freely, but previously to 1848 had most rarely conceived. In the Reports published since this date three species have produced young (hybrids in one case), and, wonderful to relate, the white Polar bear has produced young. The badger (Meles taxus) has bred several times in the Gardens; but I have not heard of this occurring elsewhere in England, and the event must be very rare, for an instance in Germany has been thought worth recording. (18/19. Wiegmann 'Archiv. fur Naturgesch.' 1837 s. 162.) In Paraguay the native Nasua, though kept in pairs during many years and perfectly tamed, has never been known, according to Rengger, to breed or show any sexual passion; nor, as I hear from Mr. Bates, does this animal, or the Cercoleptes, breed in Amazonia. Two other plantigrade genera, Procyon and Gulo, though often kept tame in Paraguay, never breed there. In the Zoological Gardens species of Nasua and Procyon have been seen to couple; but they did not produce young.
As domesticated rabbits, guinea-pigs, and white mice breed so abundantly when closely confined under various climates, it might have been thought that most other members of the Rodent order would have bred in captivity, but this is not the case. It deserves notice, as showing how the capacity to breed sometimes goes by affinity, that the one native rodent of Paraguay, which there breeds FREELY and has yielded successive generations, is the Cavia aperea; and this animal is so closely allied to the guinea-pig, that it has been erroneously thought to be the parent form. (18/20. Rengger 'Saugethiere' etc. s. 276. On the parentage of the guinea-pig, see also Isid. Geoffroy St. — Hilaire 'Hist. Nat. Gen.' I sent to Mr. H. Denny of Leeds the lice which I collected from the wild aperea in La Plata, and he informs me that they belong to a genus distinct from those found on the guinea-pig. This is important evidence that the aperea is not the parent of the guinea-pig; and is worth giving, as some authors erroneously suppose that the guinea-pig since being domesticated has become sterile when crossed with the aperea.) In the Zoological Gardens, some rodents have coupled, but have never produced young; some have neither coupled nor bred; but a few have bred, as the porcupine more than once, the Barbary mouse, lemming, chinchilla, and agouti (Dasyprocta aguti) several times. This latter animal has also produced young in Paraguay, though they were born dead and ill-formed; but in Amazonia, according to Mr. Bates, it never breeds, though often kept tame about the houses. Nor does the paca (Coelogenys paca) breed there. The common hare when confined has, I believe, never bred in Europe; though, according to a recent statement, it has crossed with the rabbit. (18/21. Although the existence of the Leporides, as described by Dr. Broca ('Journal de Phys.' tome 2 page 370), has been positively denied, yet Dr. Pigeaux ('Annals and Mag. of Nat. Hist.' volume 20 1867 page 75) affirms that the hare and rabbit have produced hybrids.) I have never heard of the dormouse breeding in confinement. But squirrels offer a more curious case: with one exception, no species has bred in the Zoological Gardens, yet as many as fourteen individuals of S. palmarum were kept together during several years. The S. cinera has been seen to couple, but it did not produce young; nor has this species, when rendered extremely tame in its native country, North America, been ever known to breed. (18/22. 'Quadrupeds of North America' by Audubon and Bachman 1846 page 268.) At Lord Derby's menagerie squirrels of many kinds were kept in numbers, but Mr. Thompson, the superintendent, told me that none had ever bred there, or elsewhere as far as he knew. I have never heard of the English squirrel breeding in confinement. But the species which has bred more than once in the Zoological Gardens is the one which perhaps might have been least expected, namely, the flying squirrel (Sciuropterus volucella): it has, also, bred several times near Birmingham; but the female never produced more than two young at a birth, whereas in its native American home she bears from three to six young. (18/23. Loudon's 'Mag. of Nat. Hist.' volume 9 1836 page 571; Audubon and Bachman 'Quadrupeds of North America' page 221.)
Monkeys, in the nine-year Report from the Zoological Gardens, are stated to unite most freely, but during this period, though many individuals were kept, there were only seven births. I have heard of only one American monkey, the Ouistiti, breeding in Europe. (18/24. Flourens 'De l'Instinct' etc. 1845 page 88.) A Macacus, according to Flourens, bred in Paris; and more than one species of this genus has produced young in London, especially the Macacus rhesus, which everywhere shows a special capacity to breed under confinement. Hybrids have been produced both in Paris and London from this same genus. The Arabian baboon, or Cynocephalus hamadryas (18/25. See 'Annual Reports Zoolog. Soc.' 1855, 1858, 1863, 1864; 'Times' newspaper August 10, 1847; Flourens 'De l'Instinct' page 85.), and a Cercopithecus have bred in the Zoological Gardens, and the latter species at the Duke of Northumberland's. Several members of the family of Lemurs have produced hybrids in the Zoological Gardens. It is much more remarkable that monkeys very rarely breed when confined in their native country; thus the Cay (Cebus azara) is frequently and completely tamed in Paraguay, but Rengger (18/26. 'Saugethiere' etc. s. 34, 49.) says that it breeds so rarely, that he never saw more than two females which had produced young. A similar observation has been made with respect to the monkeys which are frequently tamed by the aborigines in Brazil. (18/27. Art. Brazil 'Penny Cyclop.' page 363.) In Amazonia, these animals are so often kept in a tame state, that Mr. Bates in walking through the streets of Para counted thirteen species; but, as he asserts, they have never been known to breed in captivity. (18/28. 'The Naturalist on the Amazons' volume 1 page 99.)
BIRDS.
Birds offer in some respects better evidence than quadrupeds, from their breeding more rapidly and being kept in greater numbers. (18/29. A list of the species of birds which have bred in the Zoological Gardens from 1848 to 1867 inclusive has been published by Mr. Sclater in 'Proc. Zoolog. Soc.' 1869 page 626, since the first edition of this work appeared. Of Columbae 51 species have been kept, and of Anseres 80 species, and in both these families 1 species in 2.6 have bred at least once in the 20 years. Of Gallinae 83 species have been kept and 1 in 27 have bred; of 57 Grallae 1 in 9 have bred; of 110 Prehensores 1 in 22 have bred; of 178 Passeres 1 in 25.4 have bred; of 94 Accipitres 1 in 47 have bred; of 25 Picariae and of 35 Herodiones not one species in either group has bred.) We have seen that carnivorous animals are more fertile under confinement than most other mammals. The reverse holds good with carnivorous birds. It is said (18/30. 'Encyclop. of Rural Sports' page 691.) that as many as eighteen species have been used in Europe for hawking, and several others in Persia and India (18/31. According to Sir A. Burnes 'Cabool' etc. page 51, eight species are used for hawking in Sinde.); they have been kept in their native country in the finest condition, and have been flown during six, eight, or nine years (18/32. Loudon's 'Mag. of Nat. Hist.' volume 6 1833 page 110.); yet there is no record of their having ever produced young. As these birds were formerly caught whilst young, at great expense, being imported from Iceland, Norway, and Sweden, there can be little doubt that, if possible, they would have been propagated. In the Jardin des Plantes, no bird of prey has been known to couple. (18/33. F. Cuvier 'Annal. du Museum' tome 9 page 128.) No hawk, vulture, or owl has ever produced fertile eggs in the Zoological Gardens, or in the old Surrey Gardens, with the exception, in the former place on one occasion, of a condor and a kite (Milvus niger). Yet several species, namely, the Aquila fusca, Haliaetus leucocephalus, Falco tinnunculus, F. subbuteo, and Buteo vulgaris, have been seen to couple in the Zoological Gardens. Mr. Morris (18/34. 'The Zoologist' volume 7-8 1849-50 page 2648.) mentions as a unique fact that a kestrel (Falco tinnunculus) bred in an aviary. The one kind of owl which has been known to couple in the Zoological Gardens was the Eagle Owl (Bubo maximus); and this species shows a special inclination to breed in captivity; for a pair at Arundel Castle, kept more nearly in a state of nature "than ever fell to the lot of an animal deprived of its liberty" (18/35. Knox 'Ornithological Rambles in Sussex' page 91.), actually reared their young. Mr. Gurney has given another instance of this same owl breeding in confinement; and he records the case of a second species of owl, the Strix passerina, breeding in captivity. (18/36. 'The Zoologist' volume 7-8 1849-50 page 2566; volume 9-10 1851-2 page 3207.)
Of the smaller graminivorous birds, many kinds have been kept tame in their native countries, and have lived long; yet, as the highest authority on cage- birds (18/37. Bechstein 'Naturgesch. der Stubenvogel' 1840 s. 20.) remarks, their propagation is "uncommonly difficult." The canary-bird shows that there is no inherent difficulty in these birds breeding freely in confinement; and Audubon says (18/38. 'Ornithological Biography' volume 5 page 517.) that the Fringilla (Spiza) ciris of North America breeds as perfectly as the canary. The difficulty with the many finches which have been kept in confinement is all the more remarkable as more than a dozen species could be named which have yielded hybrids with the canary; but hardly any of these, with the exception of the siskin (Fringilla spinus), have reproduced their own kind. Even the bullfinch (Loxia pyrrhula) has bred as frequently with the canary, though belonging to a distinct genus, as with its own species. (18/39. A case is recorded in 'The Zoologist' volume 1-2 1843-45 page 453. For the siskin breeding, volume 3-4 1845-46 page 1075. Bechstein 'Stubenvogel' s. 139 speaks of bullfinches making nests, but rarely producing young.) With respect to the skylark (Alauda arvensis), I have heard of birds living for seven years in an aviary, which never produced young; and a great London bird-fancier assured me that he had never known an instance of their breeding; nevertheless one case has been recorded. (18/40. Yarrell 'Hist. British Birds' 1839 volume 1 page 412.) In the nine-year Report from the Zoological Society, twenty-four insessorial species are enumerated which had not bred, and of these only four were known to have coupled.
Parrots are singularly long-lived birds; and Humboldt mentions the curious fact of a parrot in South America, which spoke the language of an extinct Indian tribe, so that this bird preserved the sole relic of a lost language. Even in this country there is reason to believe (18/41. Loudon's 'Mag. of Nat. History' volume 19 1836 page 347.) that parrots have lived to the age of nearly one hundred years; yet they breed so rarely, though many have been kept in Europe, that the event has been thought worth recording in the gravest publications. (18/42. 'Memoires du Museum d'Hist. Nat.' tome 10 page 314: five cases of parrots breeding in France are here recorded. See also 'Report Brit. Assoc. Zoolog.' 1843.) Nevertheless, when Mr. Buxton turned out a large number of parrots in Norfolk, three pairs bred and reared ten young birds in the course of two seasons; and this success may be attributed to their free life. (18/43. 'Annals and Mag. of Nat. Hist.' November 1868 page 311.) According to Bechstein (18/44. 'Stubenvogel' s. 105, 83.) the African Psittacus erithacus breeds oftener than any other species in Germany: the P. macoa occasionally lays fertile eggs, but rarely succeeds in hatching them; this bird, however, has the instinct of incubation sometimes so strongly developed, that it will hatch the eggs of fowls or pigeons. In the Zoological Gardens and in the old Surrey Gardens some few species have coupled, but, with the exception of three species of parakeets, none have bred. It is a much more remarkable fact that in Guiana parrots of two kinds, as I am informed by Sir R. Schomburgk, are often taken from the nests by the Indians and reared in large numbers; they are so tame that they fly freely about the houses, and come when called to be fed, like pigeons; yet he has never heard of a single instance of their breeding. (18/45. Dr. Hancock remarks ('Charlesworth's Mag. of Nat. Hist.' volume 2 1838 page 492) "it is singular that, amongst the numerous useful birds that are indigenous to Guiana, none are found to propagate among the Indians; yet the common fowl is reared in abundance throughout the country.") In Jamaica, a resident naturalist, Mr. R. Hill (18/46. 'A Week at Pert Royal' 1855 page 7.), says, "no birds more readily submit to human dependence than the parrot-tribe, but no instance of a parrot breeding in this tame life has been known yet." Mr. Hill specifies a number of other native birds kept tame in the West Indies, which never breed in this state.
The great pigeon family offers a striking contrast with the parrots: in the nine-year Report thirteen species are recorded as having bred, and, what is more noticeable, only two were seen to couple without any result. Since the above date every annual Report gives many cases of various pigeons breeding. The two magnificent crowned pigeons (Goura coronata and victoriae) produced hybrids; nevertheless, of the former species more than a dozen birds were kept, as I am informed by Mr. Crawfurd, in a park at Penang, under a perfectly well-adapted climate, but never once bred. The Columba migratoria in its native country, North America, invariably lays two eggs, but in Lord Derby's menagerie never more than one. The same fact has been observed with the C. leucocephala. (18/47. Audubon 'American Ornithology' volume 5 pages 552, 557.)
Gallinaceous birds of many genera likewise show an eminent capacity for breeding under captivity. This is particularly the case with pheasants, yet our English species seldom lays more than ten eggs in confinement; whilst from eighteen to twenty is the usual number in the wild state. (18/48. Mowbray on 'Poultry' 7th edition page 133.) With the Gallinaceae, as with all other orders, there are marked and inexplicable exceptions in regard to the fertility of certain species and genera under confinement. Although many trials have been made with the common partridge, it has rarely bred, even when reared in large aviaries; and the hen will never hatch her own eggs. (18/49. Temminck 'Hist. Nat. Gen. des Pigeons' etc. 1813 tome 3 pages 288, 382; 'Annals and Mag. of Nat. Hist.' volume 12 1843 page 453. Other species of partridge have occasionally bred; as the red-legged (P. rubra), when kept in a large court in France (see Journal de Physique' tome 25 page 294), and in the Zoological Gardens in 1856.) The American tribe of Guans or Cracidae are tamed with remarkable ease, but are very shy breeders in this country (18/50. Rev. E.S. Dixon 'The Dovecote' 1851 pages 243-252.); but with care various species were formerly made to breed rather freely in Holland. (18/51. Temminck 'Hist. Nat. Gen. des Pigeons' etc. tome 2 pages 456, 458; tome 3 pages 2, 13, 47.) Birds of this tribe are often kept in a perfectly tamed condition in their native country by the Indians, but they never breed. (18/52. Bates 'The Naturalist on the Amazons' volume 1 page 193; volume 2 page 112.) It might have been expected that grouse from their habits of life would not have bred in captivity, more especially as they are said soon to languish and die. (18/53. Temminck 'Hist. Nat. Gen.' etc. tome 2 page 125. For Tetrao urogallus see L. Lloyd 'Field Sports of North of Europe' volume 1 pages 287, 314; and Bull. de la Soc. d'Acclimat.' tome 7 1860 page 600. For T. scoticus Thompson 'Nat. Hist. of Ireland' volume 2 1850 page 49. For T. cupido 'Boston Journal of Nat. Hist.' volume 3 page 199.) But many cases are recorded of their breeding: the capercailzie (Tetrao urogallus) has bred in the Zoological Gardens; it breeds without much difficulty when confined in Norway, and in Russia five successive generations have been reared: Tetrao tetrix has likewise bred in Norway; T. scoticus in Ireland; T. umbellus at Lord Derby's; and T. cupido in North America.
It is scarcely possible to imagine a greater change in habits than that which the members of the ostrich family must suffer, when cooped up in small enclosures under a temperate climate, after freely roaming over desert and tropical plains or entangled forests; yet almost all the kinds have frequently produced young in the various European menageries, even the mooruk (Casuarius bennetii) from New Ireland. The African ostrich, though perfectly healthy and living long in the South of France, never lays more than from twelve to fifteen eggs, though in its native country it lays from twenty-five to thirty. (18/54. Marcel de Serres 'Annales des Sc. Nat.' 2nd series Zoolog. tome 13 page 175.) Here we have another instance of fertility impaired, but not lost, under confinement, as with the flying squirrel, the hen-pheasant, and two species of American pigeons.
Most Waders can be tamed, as the Rev. E.S. Dixon informs me, with remarkable facility; but several of them are short-lived under confinement, so that their sterility in this state is not surprising. The cranes breed more readily than other genera: Grus montigresia has bred several times in Paris and in the Zoological Gardens, as has G. cinerea at the latter place, and G. antigone at Calcutta. Of other members of this great order, Tetrapteryx paradisea has bred at Knowsley, a Porphyrio in Sicily, and the Gallinula chloropus in the Zoological Gardens. On the other hand, several birds belonging to this order will not breed in their native country, Jamaica; and the Psophia, though often kept by the Indians of Guiana about their houses, "is seldom or never known to breed." (18/55. Dr. Hancock in 'Charlesworth's Mag. of Nat. Hist.' volume 2 1838 page 491; R. Hill 'A Week at Port Royal' page 8; 'Guide to the Zoological Gardens' by P.L. Sclater 1859 pages 11, 12; 'The Knowsley Menagerie' by D. Gray 1846 p1. 14; E. Blyth 'Report Asiatic Soc. of Bengal' May 1855.)