Оценить:
 Рейтинг: 0

Искусство статистики. Как находить ответы в данных

Год написания книги
2019
Теги
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
Горизонтальная гистограмма уровня выживаемости за 30 дней в тринадцати больницах. Выбор начала горизонтальной оси (в данном случае 86 %) может существенно сказаться на впечатлении, вызываемом графиком. Если ось начинается с 0 %, все больницы выглядят неразличимыми; если же начать с 95 %, разница будет обманчиво драматичной

Следовательно, выбор начала оси представляет собой дилемму. Альберто Каиро, автор авторитетных книг по визуализации данных[28 - См. A. Cairo, The Truthful Art: Data, Charts, and Maps for Communication (New Riders, 2016), и The Functional Art: An Introduction to Information Graphics and Visualization (New Riders, 2012).], предлагает всегда начинать с «логической и взвешенной точки отсчета», которую в нашем случае трудно определить. Мой собственный произвольный выбор – 86 %, что примерно отражает недопустимо низкий уровень выживаемости в Бристольской больнице двадцатью годами ранее.

Я начал книгу цитатой Нейта Сильвера, основателя цифровой платформы FiveThirtyEight и автора точного прогноза президентских выборов 2008 года в США. Он красноречиво высказал идею, что цифры не говорят сами за себя – это мы наполняем их смыслом. А значит, коммуникации – ключевая часть цикла решения проблем, и в этом разделе я показал, как способ представления данных может влиять на наше восприятие.

Теперь нам нужно ввести важное и удобное понятие, которое поможет выйти за рамки простых вопросов типа «да/нет».

Качественные переменные

Переменной называется любая величина, которая может принимать различные значения в разных обстоятельствах; это очень полезный сокращенный термин для всех видов наблюдений, содержащих данные. Бинарные переменные могут принимать только два значения (да/нет) – например, жив человек или мертв, женщина он или мужчина. Значения могут отличаться у разных людей и даже у одного человека в разные моменты жизни. Качественная (или категорийная) переменная – это переменная, которая может принимать одно, два или более значений, попадающих в ту или иную категорию. При этом категории могут быть:

• неупорядоченными: страна рождения человека, цвет автомобиля или больница, где делали операцию;

• упорядоченными: воинские звания;

• сгруппированными числами: степени ожирения, которые часто определяются в терминах пороговых значений по индексу массы тела (ИМТ)[29 - Индекс массы тела разработан бельгийским статистиком и социологом Адольфом Кетле в 1830-х годах. Он определяется так: ИМТ = масса (кг) / рост

(м). Используются самые разные способы группирования людей по этому параметру; в настоящее время в Великобритании применяются такие категории: недостаточная масса (ИМТ < 18,5), нормальная масса (ИМТ от 18,5 до 25), избыточная масса (от 25 до 30), ожирение (от 30 до 35), болезненное ожирение (свыше 35).Сам термин «индекс массы тела» появился намного позднее, в статье Анселя Киза с соавторами, опубликованной в 1972 году в Journal of Chronic Diseases. Прим. пер.].

Для отображения качественных данных часто используются круговые диаграммы, что позволяет составить представление о размере каждой категории по занимаемой ею части круга. Однако здесь вероятны проблемы с наглядностью, например при попытке изобразить на одной диаграмме слишком много категорий или использовать трехмерное представление, искажающее площади. Рис. 1.2 показывает весьма уродливый пример, смоделированный с помощью Microsoft Excel, где представлены данные из табл. 1.1 (#tab1-1) о результатах операций на сердце для 12 933 детей.

Рис. 1.2

Процентные доли операций на сердце у детей в каждой больнице, отображенные на круговой 3D-диаграмме из Excel. Это крайне неудачное представление данных зрительно увеличивает категории на переднем плане, делая невозможным визуальное сравнение между больницами

Использование сразу нескольких круговых диаграмм, как правило, не очень хорошая идея, поскольку это затрудняет сравнение относительных размеров областей разной формы. Сравнения лучше проводить с помощью гистограмм (столбчатых диаграмм) – при этом хорошо видна разница в высоте или длине. Рис. 1.3 – более простой и понятный пример горизонтальной гистограммы, где длина горизонтальной полосы отражает долю операций каждой больницы.

Рис. 1.3

Процентные доли всех операций на сердце у детей, проведенных в каждой больнице: более четкое представление с помощью горизонтальной гистограммы

Сравнение двух долей

Итак, увидев, как с помощью гистограммы можно элегантно сравнить несколько пропорциональных долей, было бы логично полагать, что сравнение двух долей вообще тривиальное дело. Однако когда эти доли представляют собой оценку рисков причинения какого-либо вреда, метод их сравнения становится серьезным, дискуссионным вопросом. Типичный пример:

Каков риск развития рака от употребления сэндвичей с беконом?

Каждому из нас знакомы громкие заголовки в СМИ, предупреждающие о том, что какая-то вполне обыденная вещь увеличивает риск возникновения чего-нибудь плохого. Я обычно называю такие истории «кошки вызывают рак». Например, в ноябре 2015 года Международное агентство по изучению рака (МАИР) Всемирной организации здравоохранения объявило обработанное мясо «канцерогеном группы I», то есть отнесло его к той же категории, что сигареты и асбест. Естественно, это привело к появлению устрашающих заголовков. Так, Daily Record написала, что «по мнению экспертов, бекон, ветчина и сосиски подвергают такому же риску развития рака, как и сигареты»[30 - Информацию Всемирной организации здравоохранения о канцерогенности потребления красного мяса и обработанного мяса см. http://www.who.int/features/qa/cancer-red-meat/en/ (http://www.who.int/features/qa/cancer-red-meat/en/). ‘Bacon, Ham and Sausages Have the Same Cancer Risk as Cigarettes Warn Experts’, Daily Record, 23 October 2015.].

МАИР попыталось подавить панику, подчеркнув, что попадание в группу I всего лишь говорит о существовании повышенного риска рака, а не о реальной величине самого риска. В пресс-релизе МАИР сообщалось, что ежедневное употребление 50 граммов обработанного мяса связано с повышением риска развития рака кишечника на 18 %. Звучит тревожно, но так ли это на самом деле?

Величина 18 % известна как относительный риск, который отражает разницу в опасности развития рака кишечника (колоректального рака) у двух групп людей: ежедневно употребляющих 50 граммов обработанного мяса (например, сэндвич с двумя ломтиками бекона) и тех, кто его не ест. Статистики наложили этот относительный показатель на каждую отдельную группу риска и посмотрели, какие абсолютные значения он принимает в каждом случае, что позволило выявить абсолютный риск этого исхода для каждой группы. Они пришли к выводу, что при нормальном ходе вещей примерно 6 из каждых 100 человек, которые не едят бекон ежедневно, заболеют раком кишечника. Если же 100 таких человек ели бы бекон ежедневно всю жизнь, то, согласно отчету МАИР, можно было бы ожидать, что больных будет на 18 % больше, то есть не 6, а 7 человек из 100[31 - Строго говоря, относительное увеличение на 18 % дает 6 ? 1,18 = 7,08 процента, но для наших целей округления до 7 % вполне достаточно.]. Один дополнительный случай рака кишечника на 100 человек, ежедневно употреблявших бекон в течение жизни, звучит вовсе не так впечатляюще, как относительный риск (увеличение на 18 %), и позволяет оценивать риски более объективно. Нужно отличать то, что действительно опасно, от того, что только выглядит пугающе[32 - Это было любимое наблюдение Ханса Рослинга, см. следующую главу (#G2).].

Пример с сэндвичем показывает, что риски полезно выражать в ожидаемых частотах, то есть вместо того, чтобы обсуждать доли или вероятности, просто спросить: «А что это означает для группы в 100 (или 1000) человек?» Психологические исследования продемонстрировали, что такой метод улучшает понимание: утверждение, что потребление мяса приводит к «18-процентному повышению риска», можно считать манипулятивным, поскольку мы знаем, что такая форма подачи информации создает преувеличенное впечатление о степени опасности[33 - E. A. Akl et al., ‘Using Alternative Statistical Formats for Presenting Risks and Risk Reductions’, Cochrane Database of Systematic Reviews 3 (2011).]. На рис. 1.4 представлена ожидаемая частота случаев рака кишечника в группе из 100 человек в виде пиктографической диаграммы.

Рис. 1.4

Пример с сэндвичем в виде двух пиктографических диаграмм, где люди с раком кишечника случайно рассеяны в общей группе. При нормальных обстоятельствах в группе из 100 человек, не употребляющих бекон, рак кишечника развивается у 6 человек (выделены темным на первой диаграмме). В группе из 100 человек, которые ежедневно едят бекон (вторая диаграмма), выявляется один дополнительный случай заболевания (заштрихованная пиктограмма)[34 - Строго говоря, шесть темных фигурок в обеих частях рисунка следовало бы разместить по-разному, поскольку диаграммы представляют разные группы из 100 человек. Но это затруднило бы их сравнение.]

На рис. 1.4 «раковые» пиктограммы случайным образом разбросаны среди 100 изображений. Хотя было продемонстрировано, что такое рассеяние усиливает впечатление непредсказуемости, его следует использовать только в случае одной дополнительной выделенной пиктограммы, тогда для быстрого визуального сравнения не нужно будет их считать.

Еще несколько способов сравнить две доли представлены в табл. 1.2, отражающей те же риски для людей, которые едят и не едят бекон.

Таблица 1.2

Примеры способов информирования о риске развития рака кишечника при ежедневном употреблении сэндвича с беконом и без него. «Число больных, которых нужно лечить», – это число людей, которые должны всю жизнь ежедневно съедать сэндвич с беконом, чтобы можно было ожидать один дополнительный случай рака кишечника (поэтому, пожалуй, этот параметр лучше назвать «числом людей, которые должны есть»)

Обычно риск выражают фразой «1 из х», то есть «1 из 16 человек» означает 6-процентный риск. Однако использовать несколько выражений «1 из…» не рекомендуется, потому что многим людям трудно их сравнивать. Например, на вопрос «Какой риск больше – 1 из 100, 1 из 10 или 1 из 1000?» около четверти людей ответили неверно: проблема в том, что большее число здесь связывается с меньшим риском, поэтому для правильного ответа требуется некоторая сообразительность.

Под шансами на событие понимается отношение вероятности его наступления к вероятности того, что оно не произойдет. Например, из 100 человек, не употребляющих бекон, у 6 будет выявлен колоректальный рак, а у 94 – нет, а значит, шансы заболеть раком у людей в этой группе составляют 6/94, что читается как «6 к 94»[35 - Подчеркиваем, что в данном случае вовсе не подразумевается, что вероятность рака равна 6/94. Объясним это на простом примере. Когда говорят о «шансах 1 к 2», то вероятность не равна 1/2. Это означает, что в вашу пользу один возможный исход, а против вас – два исхода. Следовательно, «шансы 1 к 2» означают один удачный исход из трех возможных, то есть вероятность успеха равна 1/3. Аналогично, в нашем случае вероятность рака равна 6/100, а число 6/94 – это отношение вероятности рака к вероятности его отсутствия: (6/100) / (94/100) = 6/94. Прим. пер.]. Шансы обычно используют в различных ставках, но они также широко применяются в статистическом моделировании долей, а это означает, что медицинские исследования обычно выражают эффекты, связанные с лечением или поведением, именно в отношении шансов.

Несмотря на то что отношение шансов часто встречается в исследовательской литературе, это не всегда подходящий способ показать разницу в рисках. Если события происходят достаточно редко, то такие отношения будут численно близки к относительным рискам, как в случае сэндвичей с беконом, но для распространенных событий отношения шансов могут сильно отличаться от относительных рисков, и следующий пример показывает, как это может запутать журналистов (и остальных людей).

Как можно рост с 85 до 87 % назвать 20-процентным повышением?

Статины широко используются для снижения уровня холестерина и риска инфарктов и инсультов, однако некоторых врачей беспокоят побочные эффекты их применения. Исследование, опубликованное в 2013 году, установило, что 87 % людей, принимавших статины, сообщали о мышечных болях – по сравнению с 85 % тех, кто их не принимал. Если посмотреть на способы сравнения рисков, представленные в табл. 1.2, то можно сказать либо об увеличении абсолютного риска на 2 %, либо о примерно таком же увеличении относительного риска: 0,87 / 0,85 ? 1,02. Шансы для обеих групп равны, соответственно 0,87 / 0,13 = 6,7 и 0,85 / 0,15 = 5,7, а значит, их отношение составляет 6,7 / 5,7 = 1,18. Получилось такое же значение, как и у сэндвичей с беконом, хотя при совершенно других абсолютных рисках.

Газета Daily Mail неправильно интерпретировала это отношение шансов 1,18 как относительный риск и напечатала статью под заголовком: «Статины повышают риск на 20 %», что является серьезным искажением результатов исследования. Однако винить надо не только журналистов: в кратком содержании статьи было указано лишь отношение шансов – без упоминания о том, что оно соответствует разнице между абсолютными рисками в 87 и 85 %[36 - ‘Statins Can Weaken Muscles and Joints: Cholesterol Drug Raises Risk of Problems by up to 20 per cent’, Mail Online, 3 June 2013. Исходная работа: I. Mansi et al., ‘Statins and Musculoskeletal Conditions, Arthropathies, and Injuries’, JAMA Internal Medicine 173 (2013), 1318–26.].

Это подчеркивает опасность применения отношения шансов в любом контексте, кроме научного. Всегда лучше сообщать аудитории о понятных ей абсолютных рисках вне зависимости от того, касаются они бекона, статинов или чего-то другого.

Примеры в этой главе продемонстрировали, как кажущаяся простой задача по вычислению и выражению величины долей может превратиться в довольно сложную, и здесь нужно проявлять осторожность. Психологи все активнее изучают воздействие различных форматов числовых и графических данных на наше восприятие. Коммуникации – важная часть цикла решения проблем, и она не должна зависеть от личных предпочтений.

Выводы

• Бинарные переменные принимают только два значения: да и нет. Информацию о нескольких таких переменных можно выражать в виде доли случаев, которую составляет какая-то из них.

• Положительный или отрицательный фрейминг может повлиять на эмоциональное восприятие данных.

• Относительные риски склонны преувеличивать важность, поэтому для полноты картины следует предоставлять информацию об абсолютных рисках.

• Ожидаемая частота обеспечивает понимание и правильное представление о важности.

• Отношения шансов можно оценивать в научных работах, но их не стоит использовать в обычных публикациях.

• Визуальное представление информации должно быть тщательно продумано с учетом особенностей его восприятия.

Глава 2. Числовые характеристики выборки и представление данных

Можно ли доверять мудрости толпы?

В 1907 году Фрэнсис Гальтон (двоюродный брат Чарльза Дарвина, эрудит, создатель метода идентификации отпечатков пальцев, метеоролог и автор термина «евгеника»[37 - Евгеника (др.-греч. ??????? – хорошего рода) – это учение о том, что человеческую расу можно улучшать путем селекции либо путем поощрения деторождения у «подходящих» людей (например, с помощью финансовых стимулов), либо препятствуя размножению «неподходящих» (скажем, за счет принудительной стерилизации). Многие из первых создателей статистических методов были увлеченными евгениками. Однако опыт нацистской Германии положил конец этой концепции, хотя академический журнал Annals of Eugenics поменял свое название на Annals of Genetics только в 1955 году.]) написал письмо в престижный научный журнал Nature о своем посещении выставки животноводства и птицеводства в Плимуте. Там он увидел необычный конкурс: участникам, заплатившим по 6 пенсов, предлагалось угадать вес выставленного напоказ большого откормленного быка, после того как его забьют и освежуют. По окончании конкурса ученый взял 787 заполненных билетов и выбрал из них в качестве среднего значения 1207 фунтов (547 килограммов). «Любая иная оценка рассматривалась большинством голосовавших как слишком высокая или слишком низкая», – пояснил он. Реальный вес животного составил 1198 фунтов (543 килограмма), что оказалось на удивление близко к выбранному числу[38 - F. Galton, ‘Vox Populi’, Nature (1907); доступно по адресу: https://www.nature.com/articles/075450a0 (https://www.nature.com/articles/075450a0).]. Гальтон назвал свое письмо Vox Populi («Глас народа»), хотя сегодня такой процесс принятия решений более известен как мудрость толпы.

Гальтон выполнил то, что сегодня мы назвали бы сводкой данных: он взял множество чисел на билетах и свел их к одному весу в 1207 фунтов. В этой главе мы рассмотрим методы, разработанные в последующем столетии для получения сводной информации из имеющейся массы данных. Мы увидим, что числовые характеристики выборки (показатели положения, распространения, разброса, тренды и корреляция) тесно связаны со способом их представления на бумаге или экране. Мы также поговорим о переходе от простого описания данных к сторителлингу с помощью инфографики.

Начнем с моей собственной попытки экспериментировать с мудростью толпы, которая выявляет многие из проблем, возникающих, когда в качестве источника данных используется реальный мир, со всей его склонностью к странностям и ошибкам.

Статистика касается не только таких серьезных вещей, как рак и хирургия. В рамках нашего с популяризатором математики Джеймсом Граймом довольно простого эксперимента мы выложили на YouTube видео и попросили угадать число драже в банке. Вы тоже можете попробовать это сделать, посмотрев на фотографию на рис. 2.1 (истинное число станет известно позже). Свои предположения высказали 915 человек, их ответы варьировались от 219 до 31 337. В этой главе мы увидим, как такие переменные можно изображать графически и обрабатывать численно.

<< 1 2 3 4 >>
На страницу:
3 из 4

Другие электронные книги автора Дэвид Шпигельхалтер