Самая передняя часть лобной области – «префронтальная кора» – имеет две важные части: вентральную и медиальную и латеральную префронтальную (также ее называют «дорсолатеральная префронтальная кора»). Дорсолатеральная префронтальная кора расположена по бокам. Считается, что она играет важную роль в работе памяти – например, делает возможным запоминание цифр и отвечает за произвольное внимание. Средние части префронтальной области – орбитофронтальная кора (расположена за глазными орбитами и над ними), дорсальная и вентральная часть медиальной префронтальной коры, вентролатеральная префронтальная кора и передняя поясная кора. Некоторые авторы рассматривают переднюю поясную кору и орбитофронтальные области как части лимбической системы, а другие придерживаются мнения, что эти области играют роль прослойки между нижними лимбическими и высшими областями. Иногда эти структуры называют «паралимбической корой». Эти области образуют «команду» зон, работающих вместе как функциональное целое, обеспечивающих связь далеко расположенных участков друг с другом. Они выполняют важные интегративные функции, помогают координировать и уравновешивать мыслительную и чувственную активность коры с функциями нижней лимбической системы, ствола мозга и органов тела. Медиальная префронтальная область соединяется с задней поясной, таким образом возникает «хаб» для того, что мы называем «сетью пассивного режима работы мозга».
Эта сеть активна, когда человек отдыхает перед тем, как «выдать» новые инструкции. Для нашей нейронной активности это такой «режим по умолчанию». Оказывается, мозг достаточно активен даже в состоянии «покоя». Эта сеть, кроме прочего, занимается составлением карт психических состояний. Она позволяет нам отображать психические состояния других людей в процессе, называемом «эмпатия», и отображать свое собственное психическое состояние. Когда эта сеть чрезмерно дифференцирована, возникает тревога и депрессия – это можно рассматривать как пример нарушения интеграции. Но при достаточном уровне интеграции эта нейронная сеть дает нам ощущение «я», создает условия для эмпатического понимания и заботы. Режим по умолчанию связывает восприятие сигналов, полученных от других людей, с внутренне опосредованными паттернами возбуждения нейронов. Так возникают разные уровни интеграции – от соматической до социальной.
Нейронная интеграция
Мозг функционирует как взаимосвязанная, интегрированная система, состоящая из подсистем, которые можно описать как «цепочки» или «сети». Длинные аксональные волокна связывают друг с другом далеко расположенные кластеры нейронов, образуя конфигурацию «паутины». Термин «интегрированный» означает, что эти отдельные, дифференцированные области сохраняют свои уникальные особенности, но при этом становятся связанными. Важно иметь в виду, что интеграция не означает слияния или «всеединства». Она скорее предполагает сохранение различий при содействии связи. Благодаря этому целое становится больше, чем сумма его частей. Связывание дифференцированных элементов системы и есть смысл интеграции, и когда этот процесс происходит в мозгу, мы говорим о «нейронной интеграции». Результатом нейронной интеграции является оптимальная саморегуляция: разрозненные области объединяются в функциональное целое, где между элементами присутствует баланс. Существует точка зрения, согласно которой нейронная интеграция создает баланс между хаосом и ригидностью; возникает метастабильность в основе гибких исполнительных функций, регулируемых мозгом. Каждый элемент такой системы способствует полноценной работе целого и взаимодействию сетей нейронных кластеров в разных участках. Но есть области, которые играют важную роль в интеграции активности мозга. К ним относятся «лимбические» области (особенно гиппокамп), префронтальные области, мозолистое тело (оно связывает левое и правое полушария мозга друг с другом) и мозжечок (участвует в связывании телесных движений, психических состояний и когнитивных процессов). Все эти области имеют уникальные входные и выходные пути, связывающие между собой разные части мозга. Исследования проводятся также для оценки «взаимосвязи коннектома», состояния связи дифференцированных областей в основе интеграции нервной системы. Пытаясь понять, как развивается разум, нам нужно сначала рассмотреть то, как мозг регулирует собственные внутренние процессы.
Обобщим: саморегуляция как система множества управляющих функций, по-видимому, зависит от нейронной интеграции. Главенство этого состояния проявляется в том, что многие показатели благополучия коррелируют с одной общей особенностью мозга: более взаимосвязанным коннектомом.
В МЛНБ мы делаем вывод о том, что оптимальные отношения, построенные на уважении различий между разными людьми и сочувствии – интегративные отношения, – вероятно, будут стимулировать рост интегративных волокон в мозгу маленького ребенка. Неблагоприятный детский опыт, в том числе пренебрежительное и оскорбительное отношение, напротив, тормозит здоровый рост мозга, препятствует нейронной интеграции и может негативно повлиять на способность эффективно справляться со стрессорами в будущем.
В настоящее время доказано, что даже нарушения, которые не связаны с пережитым опытом, например такие как аутизм, биполярное расстройство и шизофрения, связаны с нарушением нейроинтеграции.
Чтобы получить визуальное представление о структуре мозга, можно использовать простую трехмерную модель: нейроанатомию «на ладони» (см. рис. 1.2). Если сжать кулак, при этом держа большой палец согнутым и прижатым к центру ладони, обхватив его остальными пальцами, мы получим модель мозга. Предплечье символически изображает расположение спинного мозга внутри позвоночника, а запястье – ту часть, что находится у основания черепа. Разные части руки в этой модели – три основные области, о которых говорилось выше: мозговой ствол, лимбическая (средняя) часть и неокортекс (передняя часть).
Старая трехчастная модель в наши дни уже не считается полной и точной, но она дает возможность в общем виде познакомиться с анатомией мозга. Однако ограничения этой модели нужно признать с самого начала: пожалуйста, имейте в виду, что мозг, постоянно изменяющийся орган, устроен, конечно, гораздо сложнее, чем вот эта модель, которую можно изобразить с помощью руки. Но как отправная точка эта модель полезна. Если посмотреть на свой сжатый, как описано выше, кулак со стороны ладони, можно увидеть «орбиты глаз» вокруг участков ногтей третьего и четвертого пальцев и «уши» с обеих сторон. Пальцы представляют «кору мозга». Перед вами ее лобные доли; вверху находятся области, которые опосредуют двигательный контроль и соматосенсорные представления; по бокам и на тыльной стороне ладони расположены задние отделы – височная доля, которая опосредует перцептивную обработку внешнего мира и играет важную роль в социальной перцепции. Задние отделы мозга представлены средней линией нижней части ладони. Прямо под костяшками пальцев, глубоко внутри кулака, куда упирается кончик большого пальца, находится лимбическая область. Большая часть мозга разделена на левое и правое полушария, связанные полосками ткани, называемыми «мозолистым телом» и «передней комиссурой», – считается, что эти ткани служат прямым источником передачи информации между двумя полушариями мозга. Мозжечок, расположенный в схеме на тыльной стороне ладони возле запястья, также может косвенно передавать информацию через отдел, разделяющий две половины мозга. Также мозжечок сам может осуществлять ряд информационных и интеграционных процессов.
Рис. 1.2. Ручная модель мозга. По Siegel (2010a, стр. 15). Адаптировано с разрешения Bantam Books. © 2012 Mind Your Brain, Inc.
На передней части ладони расположены «лобные доли», это зона от второй фаланги и до ногтей. Самая передняя часть этой области, перед последними фалангами, – это префронтальная кора. Эту область мы будем исследовать на протяжении всей книги. Латеральная префронтальная кора расположена по бокам – указательный палец с одной стороны и безымянный – с другой. Орбитофронтальная область расположена ближе к центру, как вы уже догадались – сразу за и над орбитами «глаз», там, где сгибаются верхние фаланги и кончики пальцев прижимаются к ладони. Эти две области также символически представляют вентральную и медиальную зоны префронтальной части. Две средние зоны (ногти), представляющие положение средней части префронтальной области, прилегают к ряду других, из которых они получают и в которые посылают информацию: структуры мозга, обрабатывающие сенсорные и телесные данные, лимбические области и неокортекс. Трехмерная ручная модель, таким образом, дает визуальный пример нейронных взаимосвязей и показывает важность анатомии для координированной функции.
Части мозга сильно взаимосвязаны, и в академических кругах ведутся споры о том, насколько различны эти области с точки зрения строения и функций.
Понятие лимбической «системы», например, подвергалось сомнению, потому что определение ее границ (где она начинается и где заканчивается) неоднозначно с научной точки зрения. Однако лимбическая и паралимбическая области, по-видимому, используют специфические нейротрансмиттеры, имеют сильно взаимосвязанные цепи, выполняют взаимодополняющие функции и показывают сходство в своей эволюционной истории. Например, средние зоны префронтальных областей, расположенные в верхней части лимбической области и анатомически связанные с широким спектром цепочек коры и более глубоких структур головного мозга, играют жизненно важную роль в координации деятельности трех основных его составляющих.
Недавние исследования в области неврологии предполагают, что префронтальная область может играть важную роль во многих интеграционных процессах, таких как самосознание, эмпатия, память, регуляция эмоций и привязанность.
Развитие мозга
Активация невральных путей напрямую влияет на то, как устанавливаются связи внутри мозга и как изменяется регуляция генов. Опыт влияет на активность и прочность нейронных связей на протяжении всей жизни, но ранний опыт может быть особенно важным для развития основных регулирующих структур мозга. Например, опыт травмы в раннем детстве может сильно влиять на интегративные структуры мозга, отвечающие за базовые регуляторные способности, и разум в результате будет позже реагировать на стресс.
Мы видим, что дети, подвергшиеся жестокому обращению, показывают аномальные реакции на уровни гормонов стресса, что частично связано с изменениями в регуляции генов конкретных областей мозга, ответственных за реакцию на стресс. Также это может быть связано с изменениями в регуляции длины теломеров, «колпачков» хромосом, которые защищают целостность ДНК во время клеточной репликации.
Длительно повышенный кортизол может стать токсичным для мозга.
Как показывает исследование «Неблагоприятный детский опыт» (ACE), пережитые в раннем возрасте невзгоды оказывают долгосрочное воздействие на человека, приводя к последствиям не только для психического, но и для физического здоровья.
Важный вывод: ранний опыт влияет на регуляцию синаптического роста и выживания, регуляцию реакции на стресс, регуляцию длины теломеров и даже регуляцию экспрессии генов, что может повлиять на будущий рост мозга. Негативные взаимодействия с другими людьми сказываются на этих функциях организма. Опыт напрямую воздействует на процсс регулирования.
Журналист Донна Джексон Наказава в своей книге «The Angel and the Assasin» описывает один тип глиальных клеток, микроглии.
Если верить исследованиям, эти клетки функционируют как часть иммунной системы и выполняют как возбуждающую, так и конструктивную функцию в головном мозге:
У этих крошечных клеток есть и светлая сторона. Когда мозг находится в состоянии гомеостаза – другими словами, когда не происходит активации микроглий для «неправильной» работы, они активизируются другим, позитивным образом. В здоровом мозге микроглия выделяет питательные вещества для стимуляции роста новых, здоровых нейронов и создания новых синапсов везде, где они могут понадобиться. Эти клетки также высвобождают нейропротекторы, участвующие в восстановлении больных нейронов.
Микроглия может напрямую помогать нейронам формировать новые отростки, что-то вроде придатков, которые позже могут прикрепляться к другим нейронам, – так увеличивается число связей.
Микроглия, наряду с другими типами глиальных клеток, способствует росту миелина, который изолирует мозговые волокна, помогая ускорить синаптические связи. Одна из самых активных областей, где микроглия выполняет такую восстановительную работу, находится в гиппокампе.
Джексон Наказава в своем интервью нейробиологу Бет Стивенс сообщает:
«Микроглии выполняют множество полезных функций, если они правильно сбалансированы», – подчеркивает Бет. «Когда эти клетки находятся в состоянии гомеостаза, высвобождаются сигналы, происходит выброс различных белков и полезных химических веществ, обладающих защитным действием. Таким образом микроглии пытаются остановить процесс потери синапсов».
«Но когда в тканях происходит какое-то изменение, когда что-то идет не так, микроглии перестают выделять защитные вещества и начинают выделять вредные для мозга соединения, вызывающие нейровоспалительные процессы. Кроме потери синапса, таким образом, происходит неконтролируемое воспаление. Микроглия, участвуя в противовоспалительном процессе, может высвобождать большое количество цитокинов».
Новые открытия, показывающие роль микроглий в обменных процессах мозга, несомненно, прольют свет на многие аспекты развивающегося разума, которые прежде были загадкой. Центральная роль глии в процессе воспаления побуждает нас рассматривать жизнь человека в целом. Микробиом так же важен, как социокультурные факторы, которые вызывают стресс, например изоляция. Нейрогенное воспаление, а также стресс и факторы, которые могут его вызвать, нужно оценивать в контексте роли нейронов и глий в работе мозга как телесно воплощенного органа.
Повседневный опыт также формирует структуру мозга.
Развитие мозга отчасти является зависимым от опыта процессом. Опыт активирует определенные «маршруты» в мозге, укрепляя существующие связи и создавая новые.
Развитие также отчасти является «ожидаемым опытом», поскольку гены запускают создание определенных цепочек, таких, например, как зрительная система. Однако поддержание синаптических связей требует стимуляции со стороны «общевидового» опыта – например, когда при попадании света на сетчатку глаза активируется зрительная кора или при восприятии звуковых сигналов происходит стимуляция слухового нерва и соответствующих центров в головном мозге. Отсутствие сенсорного опыта может привести к гибели клеток («апоптоз») или к уменьшению синаптических связей («парцелляция»). Таков принцип развития мозга; его можно сформулировать как «используй или потеряй». Неважно, происходит ли развитие в ожидании опыта или в зависимости от него, постоянное возбуждение нейронов поддерживает синаптические связи. Рассматривая, что такое «опыт», и размышляя о механизме нейронного возбуждения, мы можем понять: «опыт – это биология» в том смысле, что он формирует активность и структуру мозга.
По этой причине я советую приемным родителям, которые заявляют, что они «не биологические», посмотреть на ситуацию с другой стороны. Да, они не участвовали в зачатии и вынашивании младенца, но они фактически становятся его биологическими родителями – в том смысле, что отношения, которые они обеспечивают, создают интерактивный опыт – основу для развивающегося разума.
Младенец рождается с генетически запрограммированным избытком нейронов, а постнатальное установление синаптических связей определяется уже не только генами, но и опытом. Гены содержат данные об общей организации структуры мозга. Однако опыт играет важную роль в том, какие гены будут экспрессироваться, как они будут активироваться и когда произойдет эта активация. Экспрессия генов приводит к производству белков, которые обеспечивают рост нейронов и образование новых синапсов. Таким образом, опыт – активация определенных невральных путей – непосредственно формирует экспрессию генов (то есть «эпигенез»). Так возникают, развиваются и укрепляются связи – это «биологический» вклад в энергетический поток разума. В эпигенезе последовательность ДНК хромосомы не меняется, но меняются молекулы, контролирующие экспрессию генов. Межличностные отношения в раннем возрасте являются основным источником опыта, который влияет на то, как гены проявляют себя в мозге. Изменения в экспрессии генов, вызванные опытом, могут быть продолжительными. Они могут даже передаваться следующему поколению посредством изменений эпигенетических регуляторных молекул в сперме и яйцеклетке.
Тут стоит кратко обрисовать происхождение нервной системы. Сперматозоид и яйцеклетка объединяются, чтобы сформировать плод. В процессе деления одна клетка превращается в две, две в четыре, четыре в восемь, восемь в шестнадцать. Деление продолжается до тех пор, пока не наступает момент анатомической дифференциации. Одни клетки в этом растущем существе оказываются снаружи, другие – внутри. Внешний слой, эктодерма, позже станет кожной оболочкой. Часть эктодермы также образует нервную трубку, сворачиваясь внутрь, – это наша будущая нервная система. Фундаментальную роль кожи как границы между внутренним и внешним миром можно таким образом перенести и на нервную систему. По сути, нервные клетки можно считать «разновидностью» кожных – их задача заключается в том, чтобы связать внутренний мир тела с внешним миром – другими людьми и окружающей средой. Рассматривая мозг как часть этой системы, связывающей внутренние телесные процессы с внешними, социальными, мы можем увидеть, как отношения формируют нас. Динамика дифференциации клеточных функций и структур и соединение этих фундаментальных элементов в более крупную систему – телесная интеграция в самом начале жизни – это основа нашего существования. То есть интеграция лежит в основе самого нашего происхождения.
Кора головного мозга младенца является наиболее «недифференцированной» частью тела. Гены и ранний опыт влияют на то, как нейроны соединяются друг с другом и формируют цепочки, порождающие разные психические процессы. Базовая архитектура мозга закладывается именно в ранние годы. Дифференциация цепочек в мозге включает в себя ряд процессов, в том числе следующие:
1. Рост аксонов в локальных областях и развитие аксональных связей между широко распространенными областями.
2. Установление новых, обширных синаптических связей между нейронами в определенных зонах и возможность роста новых нейронов в таких областях, как гиппокамп.
3. Рост миелина, в сто раз увеличивающий скорость нервной проводимости и в тридцать раз сокращающий рефрактерный период (время, в течение которого только что возбужденный нейрон должен «отдохнуть» перед повторным возбуждением). Таким образом, миелин функционально усиливает связь между синаптически связанными клетками в три тысячи раз.
4. Модификация плотности и чувствительности рецепторов постсинаптических «принимающих» клеток, – она делает связи более эффективными, когда происходит возбуждение или торможение.
5. Баланс всех этих факторов с отмиранием или сокращением нейронов и синапсов в результате неиспользования или вредных состояний, таких как хронический стресс.
В ходе экспериментов с животными было показано, что обогащенная среда и регулярные упражнения приводят к увеличению плотности синаптических связей. Особенно заметно было увеличение числа нейронов и фактического объема гиппокампа, области, важной для обучения и памяти.
Переживания также приводят к повышенной нейронной активности нейронов, созданию новых нейронов, росту новых синаптических связей и укреплению существующих синапсов. Таким образом, рост и дифференцировку мозга можно назвать «зависящим от деятельности» процессом.
Один из способов запомнить этот процесс – пользоваться утверждением: «куда направляется внимание, там активизируются нервные импульсы и растут нейронные связи».
Ментальная фокусировка внимания стимулирует активацию определенных связей в мозге. При определенных условиях это может привести к выработке белка, росту синаптических связей и образованию миелина, усиливая эффективную связь нейронов. Здесь мы можем увидеть, как внутренне мотивированный фокус внимания или направленный извне фокус внимания может непосредственно влиять на структуру и функцию мозга. Внимание: это психический процесс, телесный и связанный с отношениями, способный влиять на анатомию наших нейронных структур.
Исследования также описывают, как экспрессия генов изменяется под воздействием опыта.
Фундаментальный механизм эпигенеза заключается в том, что возбуждение нейронов может привести к «включению» или «экспрессии» генов, обеспечивающих продукцию белка. Производство белка в свою очередь вызывает структурные изменения, позволяя, например, нейронам формировать новые синаптические связи и укреплять существующие. Опыт также может вызывать изменения в молекулах хромосомы, которые не кодируют синтез белка, а вместо этого регулируют экспрессию соседнего гена. Эпигенетические изменения, обусловленные опытом, влияют на то, как и когда экспрессируются гены, и, таким образом, оказывают сильное влияние на нейронные связи. Сейчас научные исследования начинают раскрывать механизмы того, как наши родители – и даже наши бабушки и дедушки – переживали стресс, претерпевали изменения эпигенетических механизмов контроля, а затем передавали эти изменения будущим поколениям.
Эти новые открытия имеют большое значение для понимания развития, закономерностей роста, темперамента и других врожденных качеств нервной системы, а также проливают свет на передачу стресса и травмы из поколения в поколение.
Межличностный опыт влияет на то, как функционирует наш разум на протяжении всей жизни, но основные структуры, особенно те, которые отвечают за саморегуляцию, формируются в ранние годы. Как было сказано выше, регуляция как функция возникает из интеграции. По этой причине полезно следить за актуальными исследованиями, которые описывают, как межличностный опыт формирует рост интегративных и регуляторных цепочек мозга. Основное предположение состоит в том, что интегративная коммуникация стимулирует здоровый рост соответствующих волокон в мозге. Мы внимательно рассмотрим ранние годы жизни, чтобы понять, как развивается разум и как взаимодействие с родителями помогает возникновению саморегуляции. Важно учитывать и «телесность» разума, и то, как он связан с отношениями. Два этих аспекта влияют друг на друга, в результате возникает разум как самоорганизующаяся система. Исследования нейропластичности показывают, что мозг открыт для развития на протяжении всей жизни.
Изучая ранний межличностный опыт, мы можем попытаться понять, как отношения влияют на мозг на протяжении всей жизни.