Оценить:
 Рейтинг: 0

The Canterbury Puzzles, and Other Curious Problems

Автор
Год написания книги
2019
<< 1 ... 11 12 13 14 15 16 17 18 19 ... 21 >>
На страницу:
15 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

In this little problem we attempted to show how, by sophistical reasoning, it may apparently be proved that the diagonal of a square is of precisely the same length as two of the sides. The puzzle was to discover the fallacy, because it is a very obvious fallacy if we admit that the shortest distance between two points is a straight line. But where does the error come in?

Well, it is perfectly true that so long as our zigzag path is formed of "steps" parallel to the sides of the square that path must be of the same length as the two sides. It does not matter if you have to use the most powerful microscope obtainable; the rule is always true if the path is made up of steps in that way. But the error lies in the assumption that such a zigzag path can ever become a straight line. You may go on increasing the number of steps infinitely—that is, there is no limit whatever theoretically to the number of steps that can be made—but you can never reach a straight line by such a method. In fact it is just as much a "jump" to a straight line if you have a billion steps as it is at the very outset to pass from the two sides to the diagonal. It would be just as absurd to say we might go on dropping marbles into a basket until they become sovereigns as to say we can increase the number of our steps until they become a straight line. There is the whole thing in a nutshell.

29 (#pgepubid00038).—Chaucer's Puzzle

The surface of water or other liquid is always spherical, and the greater any sphere is the less is its convexity. Hence the top diameter of any vessel at the summit of a mountain will form the base of the segment of a greater sphere than it would at the bottom. This sphere, being greater, must (from what has been already said) be less convex; or, in other words, the spherical surface of the water must be less above the brim of the vessel, and consequently it will hold less at the top of a mountain than at the bottom. The reader is therefore free to select any mountain he likes in Italy—or elsewhere!

30 (#pgepubid00039).—The Puzzle of the Canon's Yeoman

The number of different ways is 63,504. The general formula for such arrangements, when the number of letters in the sentence is 2n + 1, and it is a palindrome without diagonal readings, is [4(2

– 1)]

.

I think it will be well to give here a formula for the general solution of each of the four most common forms of the diamond-letter puzzle. By the word "line" I mean the complete diagonal. Thus in A, B, C, and D, the lines respectively contain 5, 5, 7, and 9 letters. A has a non-palindrome line (the word being BOY), and the general solution for such cases, where the line contains 2n + 1 letters, is 4(2

– 1). Where the line is a single palindrome, with its middle letter in the centre, as in B, the general formula is [4(2

– 1)]

. This is the form of the Rat-catcher's Puzzle, and therefore the expression that I have given above. In cases C and D we have double palindromes, but these two represent very different types. In C, where the line contains 4n-1 letters, the general expression is 4(2

n-2). But D is by far the most difficult case of all.

I had better here state that in the diamonds under consideration (i.) no diagonal readings are allowed—these have to be dealt with specially in cases where they are possible and admitted; (ii.) readings may start anywhere; (iii.) readings may go backwards and forwards, using letters more than once in a single reading, but not the same letter twice in immediate succession. This last condition will be understood if the reader glances at C, where it is impossible to go forwards and backwards in a reading without repeating the first O touched—a proceeding which I have said is not allowed. In the case D it is very different, and this is what accounts for its greater difficulty. The formula for D is this:

where the number of letters in the line is 4n + 1. In the example given there are therefore 400 readings for n = 2.

See also Nos. 256, 257, and 258 in A. in M.

31 (#pgepubid00040).—The Manciple's Puzzle

The simple Ploughman, who was so ridiculed for his opinion, was perfectly correct: the Miller should receive seven pieces of money, and the Weaver only one. As all three ate equal shares of the bread, it should be evident that each ate 8/3 of a loaf. Therefore, as the Miller provided 15/3 and ate 8/3, he contributed 7/3 to the Manciple's meal; whereas the Weaver provided 9/3, ate 8/3, and contributed only 1/3. Therefore, since they contributed to the Manciple in the proportion of 7 to 1, they must divide the eight pieces of money in the same proportion.

PUZZLING TIMES AT SOLVAMHALL CASTLE

SIR HUGH EXPLAINS HIS PROBLEMS

The friends of Sir Hugh de Fortibus were so perplexed over many of his strange puzzles that at a gathering of his kinsmen and retainers he undertook to explain his posers.

"Of a truth," said he, "some of the riddles that I have put forth would greatly tax the wit of the unlettered knave to rede; yet will I try to show the manner thereof in such way that all may have understanding. For many there be who cannot of themselves do all these things, but will yet study them to their gain when they be given the answers, and will take pleasure therein."

32 (#pgepubid00042).—The Game of Bandy-Ball

Sir Hugh explained, in answer to this puzzle, that as the nine holes were 300, 250, 200, 325, 275, 350, 225, 375, and 400 yards apart, if a man could always strike the ball in a perfectly straight line and send it at will a distance of either 125 yards or 100 yards, he might go round the whole course in 26 strokes. This is clearly correct, for if we call the 125 stroke the "drive" and the 100 stroke the "approach," he could play as follows:—The first hole could be reached in 3 approaches, the second in 2 drives, the third in 2 approaches, the fourth in 2 approaches and 1 drive, the fifth in 3 drives and 1 backward approach, the sixth in 2 drives and 1 approach, the seventh in 1 drive and 1 approach, the eighth in 3 drives, and the ninth hole in 4 approaches. There are thus 26 strokes in all, and the feat cannot be performed in fewer.

33 (#pgepubid00043).—Tilting at the Ring

"By my halidame!" exclaimed Sir Hugh, "if some of yon varlets had been put in chains, which for their sins they do truly deserve, then would they well know, mayhap, that the length of any chain having like rings is equal to the inner width of a ring multiplied by the number of rings and added to twice the thickness of the iron whereof it is made. It may be shown that the inner width of the rings used in the tilting was one inch and two-thirds thereof, and the number of rings Stephen Malet did win was three, and those that fell to Henry de Gournay would be nine."

The knight was quite correct, for 1-2/3 in. × 3 + 1 in. = 6 in., and 1-2/3 in. x 9 + 1 in. = 16 in. Thus De Gournay beat Malet by six rings. The drawing showing the rings may assist the reader in verifying the answer and help him to see why the inner width of a link multiplied by the number of links and added to twice the thickness of the iron gives the exact length. It will be noticed that every link put on the chain loses a length equal to twice the thickness of the iron.

34 (#pgepubid00044).—The Noble Demoiselle

"Some here have asked me," continued Sir Hugh, "how they may find the cell in the Dungeon of the Death's-head wherein the noble maiden was cast. Beshrew me! but 'tis easy withal when you do but know how to do it. In attempting to pass through every door once, and never more, you must take heed that every cell hath two doors or four, which be even numbers, except two cells, which have but three. Now, certes, you cannot go in and out of any place, passing through all the doors once and no more, if the number of doors be an odd number. But as there be but two such odd cells, yet may we, by beginning at the one and ending at the other, so make our journey in many ways with success. I pray you, albeit, to mark that only one of these odd cells lieth on the outside of the dungeon, so we must perforce start therefrom. Marry, then, my masters, the noble demoiselle must needs have been wasting in the other."

The drawing will make this quite clear to the reader. The two "odd cells" are indicated by the stars, and one of the many routes that will solve the puzzle is shown by the dotted line. It is perfectly certain that you must start at the lower star and end at the upper one; therefore the cell with the star situated over the left eye must be the one sought.

35 (#pgepubid00045).—The Archery Butt

"It hath been said that the proof of a pudding is ever in the eating thereof, and by the teeth of Saint George I know no better way of showing how this placing of the figures may be done than by the doing of it. Therefore have I in suchwise written the numbers that they do add up to twenty and three in all the twelve lines of three that are upon the butt."

I think it well here to supplement the solution of De Fortibus with a few remarks of my own. The nineteen numbers may be so arranged that the lines will add up to any number we may choose to select from 22 to 38 inclusive, excepting 30. In some cases there are several different solutions, but in the case of 23 there are only two. I give one of these. To obtain the second solution exchange respectively 7, 10, 5, 8, 9, in the illustration, with 13, 4, 17, 2, 15. Also exchange 18 with 12, and the other numbers may remain unmoved. In every instance there must be an even number in the central place, and any such number from 2 to 18 may occur. Every solution has its complementary. Thus, if for every number in the accompanying drawing we substitute the difference between it and 20, we get the solution in the case of 37. Similarly, from the arrangement in the original drawing, we may at once obtain a solution for the case of 38.

36 (#pgepubid00046).—The Donjon Keep Window

In this case Sir Hugh had greatly perplexed his chief builder by demanding that he should make a window measuring one foot on every side and divided by bars into eight lights, having all their sides equal. The illustration will show how this was to be done. It will be seen that if each side of the window measures one foot, then each of the eight triangular lights is six inches on every side.

"Of a truth, master builder," said De Fortibus slyly to the architect, "I did not tell thee that the window must be square, as it is most certain it never could be."

37 (#pgepubid00047).—The Crescent and the Cross

"By the toes of St. Moden," exclaimed Sir Hugh de Fortibus when this puzzle was brought up, "my poor wit hath never shaped a more cunning artifice or any more bewitching to look upon. It came to me as in a vision, and ofttimes have I marvelled at the thing, seeing its exceeding difficulty. My masters and kinsmen, it is done in this wise."

The worthy knight then pointed out that the crescent was of a particular and somewhat irregular form—the two distances a to b and c to d being straight lines, and the arcs ac and bd being precisely similar. He showed that if the cuts be made as in Figure 1, the four pieces will fit together and form a perfect square, as shown in Figure 2, if we there only regard the three curved lines. By now making the straight cuts also shown in Figure 2, we get the ten pieces that fit together, as in Figure 3, and form a perfectly symmetrical Greek cross. The proportions of the crescent and the cross in the original illustration were correct, and the solution can be demonstrated to be absolutely exact and not merely approximate.

I have a solution in considerably fewer pieces, but it is far more difficult to understand than the above method, in which the problem is simplified by introducing the intermediate square.

38 (#pgepubid00048).—The Amulet

The puzzle was to place your pencil on the A at the top of the amulet and count in how many different ways you could trace out the word "Abracadabra" downwards, always passing from a letter to an adjoining one.

"Now, mark ye, fine fellows," said Sir Hugh to some who had besought him to explain, "that at the very first start there be two ways open: whichever B ye select, there will be two several ways of proceeding (twice times two are four); whichever R ye select, there be two ways of going on (twice times four are eight); and so on until the end. Each letter in order from A downwards may so be reached in 2, 4, 8, 16, 32, etc., ways. Therefore, as there be ten lines or steps in all from A to the bottom, all ye need do is to multiply ten 2's together, and truly the result, 1024, is the answer thou dost seek."

39 (#pgepubid00049).—The Snail on the Flagstaff

Though there was no need to take down and measure the staff, it is undoubtedly necessary to find its height before the answer can be given. It was well known among the friends and retainers of Sir Hugh de Fortibus that he was exactly six feet in height. It will be seen in the original picture that Sir Hugh's height is just twice the length of his shadow. Therefore we all know that the flagstaff will, at the same place and time of day, be also just twice as long as its shadow. The shadow of the staff is the same length as Sir Hugh's height; therefore this shadow is six feet long, and the flagstaff must be twelve feet high. Now, the snail, by climbing up three feet in the daytime and slipping back two feet by night, really advances one foot in a day of twenty-four hours. At the end of nine days it is three feet from the top, so that it reaches its journey's end on the tenth day.

The reader will doubtless here exclaim, "This is all very well; but how were we to know the height of Sir Hugh? It was never stated how tall he was!" No, it was not stated in so many words, but it was none the less clearly indicated to the reader who is sharp in these matters. In the original illustration to the donjon keep window Sir Hugh is shown standing against a wall, the window in which is stated to be one foot square on the inside. Therefore, as his height will be found by measurement to be just six times the inside height of the window, he evidently stands just six feet in his boots!

40 (#pgepubid00050).—Lady Isabel's Casket

The last puzzle was undoubtedly a hard nut, but perhaps difficulty does not make a good puzzle any the less interesting when we are shown the solution. The accompanying diagram indicates exactly how the top of Lady Isabel de Fitzarnulph's casket was inlaid with square pieces of rare wood (no two squares alike) and the strip of gold 10 inches by a quarter of an inch. This is the only possible solution, and it is a singular fact (though I cannot here show the subtle method of working) that the number, sizes, and order of those squares are determined by the given dimensions of the strip of gold, and the casket can have no other dimensions than 20 inches square. The number in a square indicates the length in inches of the side of that square, so the accuracy of the answer can be checked almost at a glance.

Sir Hugh de Fortibus made some general concluding remarks on the occasion that are not altogether uninteresting to-day.

"Friends and retainers," he said, "if the strange offspring of my poor wit about which we have held pleasant counsel to-night hath mayhap had some small interest for ye, let these matters serve to call to mind the lesson that our fleeting life is rounded and beset with enigmas. Whence we came and whither we go be riddles, and albeit such as these we may never bring within our understanding, yet there be many others with which we and they that do come after us will ever strive for the answer. Whether success do attend or do not attend our labour, it is well that we make the attempt; for 'tis truly good and honourable to train the mind, and the wit, and the fancy of man, for out of such doth issue all manner of good in ways unforeseen for them that do come after us."
<< 1 ... 11 12 13 14 15 16 17 18 19 ... 21 >>
На страницу:
15 из 21