Оценить:
 Рейтинг: 0

The Canterbury Puzzles, and Other Curious Problems

Автор
Год написания книги
2019
<< 1 ... 16 17 18 19 20 21 >>
На страницу:
20 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

The solutions for all cases up to 12 inclusive are given in A. in M., pp. 205, 206.

91 (#pgepubid00107).—The Five Tea Tins

There are twelve ways of arranging the boxes without considering the pictures. If the thirty pictures were all different the answer would be 93,312. But the necessary deductions for cases where changes of boxes may be made without affecting the order of pictures amount to 1,728, and the boxes may therefore be arranged, in accordance with the conditions, in 91,584 different ways. I will leave my readers to discover for themselves how the figures are to be arrived at.

92 (#pgepubid00108).—The Four Porkers

The number of ways in which the four pigs may be placed in the thirty-six sties in accordance with the conditions is seventeen, including the example that I gave, not counting the reversals and reflections of these arrangements as different. Jaenisch, in his Analyse Mathématique au jeu des Échecs (1862), quotes the statement that there are just twenty-one solutions to the little problem on which this puzzle is based. As I had myself only recorded seventeen, I examined the matter again, and found that he was in error, and, doubtless, had mistaken reversals for different arrangements.

Here are the seventeen answers. The figures indicate the rows, and their positions show the columns. Thus, 104603 means that we place a pig in the first row of the first column, in no row of the second column, in the fourth row of the third column, in the sixth row of the fourth column, in no row of the fifth column, and in the third row of the sixth column. The arrangement E is that which I gave in diagram form:—

It will be found that forms N and Q are semi-symmetrical with regard to the centre, and therefore give only two arrangements each by reversal and reflection; that form H is quarter-symmetrical, and gives only four arrangements; while all the fourteen others yield by reversal and reflection eight arrangements each. Therefore the pigs may be placed in (2 × 2) + (4 × 1) + (8 × 14) = 120 different ways by reversing and reflecting all the seventeen forms.

Three pigs alone may be placed so that every sty is in line with a pig, provided that the pigs are not forbidden to be in line with one another; but there is only one way of doing it (if we do not count reversals as different), as follows: 105030.

93 (#pgepubid00109).—The Number Blocks

Arrange the blocks so as to form the two multiplication sums 915 × 64 and 732 × 80, and the product in both cases will be the same: 58,560.

94 (#pgepubid00110).—Foxes and Geese

The smallest possible number of moves is twenty-two—that is, eleven for the foxes and eleven for the geese. Here is one way of solving the puzzle:

Of course, the reader will play the first move in the top line, then the first move in the second line, then the second move in the top line, and so on alternately.

In A. in M., p. 230, I have explained fully my "buttons and string" method of solving puzzles on chequered boards. In Diagram A is shown the puzzle in the form in which it may be presented on a portion of the chessboard with six knights. A comparison with the illustration on page 141 will show that I have there dispensed with the necessity of explaining the knight's move to the uninstructed reader by lines that indicate those moves. The two puzzles are the same thing in different dress. Now compare page 141 with Diagram B, and it will be seen that by disentangling the strings I have obtained a simplified diagram without altering the essential relations between the buttons or discs. The reader will now satisfy himself without any difficulty that the puzzle requires eleven moves for the foxes and eleven for the geese. He will see that a goose on 1 or 3 must go to 8, to avoid being one move from a fox and to enable the fox on 11 to come on to the ring. If we play 1—8, then it is clearly best to play 10—5 and not 12—5 for the foxes. When they are all on the circle, then they simply promenade round it in a clockwise direction, taking care to reserve 8—3 and 5—12 for the final moves. It is thus rendered ridiculously easy by this method. See also notes on solutions to Nos. 13 (#pgepubid00144) and 85 (#pgepubid00222).

95 (#pgepubid00111).—Robinson Crusoe's Table

The diagram shows how the piece of wood should be cut in two pieces to form the square table-top. A, B, C, D are the corners of the table. The way in which the piece E fits into the piece F will be obvious to the eye of the reader. The shaded part is the wood that is discarded.

96 (#pgepubid00112).—The Fifteen Orchards

The number must be the least common multiple of 1, 2, 3, etc., up to 15, that, when divided by 7, leaves the remainder 1, by 9 leaves 3, by 11 leaves 10, by 13 leaves 3, and by 14 leaves 8. Such a number is 120. The next number is 360,480, but as we have no record of a tree—especially a very young one—bearing anything like such a large number of apples, we may take 120 to be the only answer that is acceptable.

97 (#pgepubid00113).—The Perplexed Plumber

The rectangular closed cistern that shall hold a given quantity of water and yet have the smallest possible surface of metal must be a perfect cube—that is, a cistern every side of which is a square. For 1,000 cubic feet of water the internal dimensions will be 10 ft. × 10 ft. × 10 ft., and the zinc required will be 600 square feet. In the case of a cistern without a top the proportions will be exactly half a cube. These are the "exact proportions" asked for in the second case. The exact dimensions cannot be given, but 12.6 ft. × 12.6 ft. × 6.3 ft. is a close approximation. The cistern will hold a little too much water, at which the buyer will not complain, and it will involve the plumber in a trifling loss not worth considering.

98 (#pgepubid00114).—The Nelson Column

If you take a sheet of paper and mark it with a diagonal line, as in Figure A, you will find that when you roll it into cylindrical form, with the line outside, it will appear as in Figure B.

It will be seen that the spiral (in one complete turn) is merely the hypotenuse of a right-angled triangle, of which the length and width of the paper are the other two sides. In the puzzle given, the lengths of the two sides of the triangle are 40 ft. (one-fifth of 200 ft.) and 16 ft. 8 in. Therefore the hypotenuse is 43 ft. 4 in. The length of the garland is therefore five times as long—216 ft. 8 in. A curious feature of the puzzle is the fact that with the dimensions given the result is exactly the sum of the height and the circumference.

99 (#pgepubid00115).—The Two Errand Boys

All that is necessary is to add the two distances at which they meet to twice their difference. Thus 720 + 400 + 640 = 1760 yards, or one mile, which is the distance required. Or, put another way, three times the first distance less the second distance will always give the answer, only the first distance should be more than two-thirds of the second.

100 (#pgepubid00116).—On the Ramsgate Sands

Just six different rings may be formed without breaking the conditions. Here is one way of effecting the arrangements.

Join the ends and you have the six rings.

Lucas devised a simple mechanical method for obtaining the n rings that may be formed under the conditions by 2n+1 children.

101 (#pgepubid00117).—The Three Motor-Cars

The only set of three numbers, of two, three, and five figures respectively, that will fulfil the required conditions is 27 × 594 = 16,038. These three numbers contain all the nine digits and 0, without repetition; the first two numbers multiplied together make the third, and the second is exactly twenty-two times the first. If the numbers might contain one, four, and five figures respectively, there would be many correct answers, such as 3 × 5,694 = 17,082; but it is a curious fact that there is only one answer to the problem as propounded, though it is no easy matter to prove that this is the case.

102 (#pgepubid00118).—A Reversible Magic Square

It will be seen that in the arrangement given every number is different, and all the columns, all the rows, and each of the two diagonals, add up 179, whether you turn the page upside down or not. The reader will notice that I have not used the figures 3, 4, 5, 8, or 0.

103 (#pgepubid00119).—The Tube Railway

There are 640 different routes. A general formula for puzzles of this kind is not practicable. We have obviously only to consider the variations of route between B and E. Here there are nine sections or "lines," but it is impossible for a train, under the conditions, to traverse more than seven of these lines in any route. In the following table by "directions" is meant the order of stations irrespective of "routes." Thus, the "direction" BCDE gives nine "routes," because there are three ways of getting from B to C, and three ways of getting from D to E. But the "direction" BDCE admits of no variation; therefore yields only one route.

We thus see that there are just 640 different routes in all, which is the correct answer to the puzzle.

104 (#pgepubid00120).—The Skipper and the Sea-Serpent

Each of the three pieces was clearly three cables long. But Simon persisted in assuming that the cuts were made transversely, or across, and that therefore the complete length was nine cables. The skipper, however, explained (and the point is quite as veracious as the rest of his yarn) that his cuts were made longitudinally—straight from the tip of the nose to the tip of the tail! The complete length was therefore only three cables, the same as each piece. Simon was not asked the exact length of the serpent, but how long it must have been. It must have been at least three cables long, though it might have been (the skipper's statement apart) anything from that up to nine cables, according to the direction of the cuts.

105 (#pgepubid00121).—The Dorcas Society

If there were twelve ladies in all, there would be 132 kisses among the ladies alone, leaving twelve more to be exchanged with the curate—six to be given by him and six to be received. Therefore, of the twelve ladies, six would be his sisters. Consequently, if twelve could do the work in four and a half months, six ladies would do it in twice the time—four and a half months longer—which is the correct answer.

At first sight there might appear to be some ambiguity about the words, "Everybody kissed everybody else, except, of course, the bashful young man himself." Might this not be held to imply that all the ladies immodestly kissed the curate, although they were not (except the sisters) kissed by him in return? No; because, in that case, it would be found that there must have been twelve girls, not one of whom was a sister, which is contrary to the conditions. If, again, it should be held that the sisters might not, according to the wording, have kissed their brother, although he kissed them, I reply that in that case there must have been twelve girls, all of whom must have been his sisters. And the reference to the ladies who might have worked exclusively of the sisters shuts out the possibility of this.

106 (#pgepubid00122).—The Adventurous Snail

At the end of seventeen days the snail will have climbed 17 ft., and at the end of its eighteenth day-time task it will be at the top. It instantly begins slipping while sleeping, and will be 2 ft. down the other side at the end of the eighteenth day of twenty-four hours. How long will it take over the remaining 18 ft.? If it slips 2 ft. at night it clearly overcomes the tendency to slip 2 ft. during the daytime, in climbing up. In rowing up a river we have the stream against us, but in coming down it is with us and helps us. If the snail can climb 3 ft. and overcome the tendency to slip 2 ft. in twelve hours' ascent, it could with the same exertion crawl 5 ft. a day on the level. Therefore, in going down, the same exertion carries it 7 ft. in twelve hours—that is, 5 ft. by personal exertion and 2 ft. by slip. This, with the night slip, gives it a descending progress of 9 ft. in the twenty-four hours. It can, therefore, do the remaining 18 ft. in exactly two days, and the whole journey, up and down, will take it exactly twenty days.

107 (#pgepubid00123).—The Four Princes

When Montucla, in his edition of Ozanam's Recreations in Mathematics, declared that "No more than three right-angled triangles, equal to each other, can be found in whole numbers, but we may find as many as we choose in fractions," he curiously overlooked the obvious fact that if you give all your sides a common denominator and then cancel that denominator you have the required answer in integers!

Every reader should know that if we take any two numbers, m and n, then m

+ n

, m

– n

, and 2mn will be the three sides of a rational right-angled triangle. Here m and n are called generating numbers. To form three such triangles of equal area, we use the following simple formula, where m is the greater number:—
<< 1 ... 16 17 18 19 20 21 >>
На страницу:
20 из 21