Random Forest состоит из множества решающих деревьев, обученных на различных подвыборках данных. Каждое дерево дает свой прогноз, а итоговый прогноз определяется путем голосования (классификация) или усреднения (регрессия).
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# Загрузка данных
data = load_iris()
X = data.data
y = data.target
# Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Обучение модели Random Forest
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
# Прогнозирование и оценка точности
y_pred = rf_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Точность модели Random Forest: {accuracy:.4f}')
```
2. Boosting: Gradient Boosting
Gradient Boosting строит серию деревьев, где каждая последующая модель пытается исправить ошибки предыдущих моделей.
```python
from sklearn.ensemble import GradientBoostingClassifier
# Обучение модели Gradient Boosting
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
gb_model.fit(X_train, y_train)
# Прогнозирование и оценка точности
y_pred = gb_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Точность модели Gradient Boosting: {accuracy:.4f}')
```
Ансамблевые методы в комбинации: Voting Classifier
Voting Classifier объединяет предсказания нескольких моделей и принимает решение на основе голосования.
```python
from sklearn.ensemble import VotingClassifier
# Создание ансамбля из нескольких моделей
voting_model = VotingClassifier(
estimators=[
('rf', rf_model),
('gb', gb_model)
],
voting='soft' # 'hard' для мажоритарного голосования
)
# Обучение ансамблевой модели
voting_model.fit(X_train, y_train)
# Прогнозирование и оценка точности
y_pred = voting_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Точность ансамблевой модели Voting Classifier: {accuracy:.4f}')